
 1 

Knowledge externalities and the costs of knowledge  

 

Cristiano Antonelli, Alessandra Colombelli 

 

 

ABSTRACT. This paper contributes the economics of knowledge and innovation with the analysis 

of the knowledge cost function and sheds light on the determinants of the large variance in the cost 

of innovation across firms. The amount and the structure of external knowledge and the internal 

stocks of knowledge that firms can access and use in the generation of new technological 

knowledge help firms to reduce the costs of innovations. The empirical section is based upon a 

panel of companies listed on UK and the main continental Europe financial markets (Germany, 

France and Italy) for the period 1995 – 2006, for which information about patents have been 

gathered. The econometric analysis of the costs of knowledge considers the unit costs of patents on 

the right hand side, and on the left hand side next to R&D expenditures, the stock of knowledge 

internal and external to each firm. In order to articulate the different facets of the external 

knowledge that is made accessible by proximity with firms co-localized in the same region 

(NUTS2), we further include other variables proxying for regional variety, complementarity and 

similarity. The results confirm that the stock of internal knowledge and the access to external 

knowledge play a key role in reducing the actual cost of the generation of new technological 

knowledge at the firm level. 
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1. INTRODUCTION 

The identification of the knowledge generation function has been a major progress in the economics 

of knowledge (Weitzman, 1998, Crépon, Duguet, Mairesse, 1998 ). Finally technological 

knowledge can be analyzed as the output of a dedicated economic activity. Working along these 

lines increasing evidence shows that the unit costs of innovations differ widely across firms. Some 

firms are able to introduce an innovation with low levels of current expenditures in R&D. Others 

experience very high levels of current expenditures. As a matter of fact the costs of innovations 

differ and their variance becomes a fascinating area of research. The study of the cost of innovation 

seems an important area of investigation that has received, so far, quite surprisingly, very little 

attention. After the introduction of the knowledge generation function it is now necessary to 

introduce the knowledge cost function. 

 

The new appreciation of the role of knowledge indivisibility in the generation of new knowledge 

leads to better grasping the specific effects of knowledge externalities and knowledge cumulability 

on the costs of knowledge. Knowledge cumulability and knowledge externalities in fact do affect 

the costs of innovations. The rest of the paper is structured as it follows. Section 2 recalls the recent 

acquisitions of the new economics of knowledge and applies them to grasping the determinants of 

the heterogeneity of firms in terms of unit costs of their innovations. Section 3 provides an 

empirical investigation based on the econometric estimate of an innovation cost function based 

upon a panel of companies listed on UK and the main continental Europe financial markets 

(Germany, France and Italy) for the period 1995 – 2006, for which information about patents have 

been gathered. The conclusions summarize the results. 

 

2. INNOVATION AS AN INPUT AND OUTPUT 

Building upon the arrovian foundations of the analysis of knowledge as an economic good, the new 

economics of knowledge has made it possible to grasp the dynamic characteristics of the generation 
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of knowledge (Nelson, 1959; Arrow, 1962 and 1969). After a long period of time during which the 

early economics of knowledge has investigated in depth the determinants and the effects of the 

limited appropriability of knowledge as an economic good, the new economic of knowledge paid 

much attention to elaborating the implications of knowledge indivisibility in terms of both 

knowledge cumulability and knowledge complementarity. Knowledge is at the same time an input 

and an output. Its generation consists in the recombination of knowledge items that enter the 

process as inputs (Nelson, 1982). Because of knowledge complementarity and knowledge 

cumulability, next to current R&D activities both external knowledge generated by third parties but 

not fully appropriated and the internal stocks of knowledge generated by each firm in the past, are 

now recognized as relevant inputs into the generation of knowledge as an output. The knowledge 

generated as the output of a dedicate activity is itself a necessary condition and hence an input for 

the introduction of an innovation (David, 1993).  

 

In turn the introduction of an innovation is the result of complex process that mobilizes the 

competence of the firm, the amount of external knowledge that can be used, and relies on the 

dedicated resources that are specifically invested. The introduction of an innovation requires the 

generation of new knowledge. The introduction of an innovation is actually the output of an activity 

that entails many different inputs and a specific competence (Lööf and Heshmati, 2002). These 

distinctions make clear that much more attention is necessary to use the standard indicators. Some 

of the traditional indicators such as patents and innovation counts actually measure the output of the 

innovation process. Others, namely R&D, are more precisely input measures.  

 

This has led to the analysis of the generation of technological knowledge as a specific economic 

activity (Crépon, Duguet, Mairesse, 1998 ;  Nesta, Saviotti, 2005; Lööf and Heshmati, 2002). A 

second important step in this enquiry can be done with the analysis of the knowledge cost function. 

This approach enables to identify the determinants of the great variance in the costs of innovations. 
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Specifically the study of the knowledge cost function helps grasping to what extent the cost of 

knowledge is affected by the costs of inputs. 

 

As soon as it becomes evident that R&D are not the single input into the innovation process 

(Gunday et al., 2011), in fact, the actual access conditions to the other knowledge inputs acquire a 

new relevance. The other knowledge inputs such as the amount of external knowledge that can be 

accessed by firms to generate new knowledge and eventually introduce new technologies are 

distributed unevenly across space. Major institutional and structural characteristics affect the actual 

amount of external knowledge that each firm can use as an input (Cohen and Levinthal, 1989). The 

costs of inputs may differ in turn because of the variance in the access conditions to the external 

knowledge available and because of the different characteristics of the local pools of external 

knowledge. For the same token firms differ widely with respect to the size and the characteristics of 

the stocks of internal knowledge that can be used to generate new knowledge (Jones, 1995). Input 

and output do not coincide especially when firms differ in their specific competence in managing 

the innovation process.  

 

The inclusion in the knowledge cost function of these variables stems from the identification of the 

recombinatorial character of the knowledge generation process and enables to appreciate the role of 

knowledge indivisibility, as articulated in knowledge cumulability and knowledge complementarity 

in its generation (Weitzman, 1996 and 1998). Let us consider them in turn. 

 

Knowledge cumulability – and its limited exhaustibility – implies that the stock of existing 

knowledge can be used again and again and plays a central role as an input into the generation of 

new knowledge. The stock of knowledge qualifies and identifies the knowledge base of each firm. 

The inclusion of this variable enables to grasp the path dependent character of the knowledge 

generation. The generation of new technological knowledge at each point in time, by each agent, in 
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fact, is strongly influenced by the accumulation of knowledge in the past. The current levels of 

R&D expenditures of each agent do play a role but only in a context that is shaped by the past of 

each firm (Antonelli, 2011; Belenzon, 2012). 

 

The appreciation of knowledge complementarity enables to put in context the role of knowledge 

externalities. A large literature had explored the role of technological spillovers as a major input 

into the generation of new technological knowledge (Colombelli et al., 2013). In this approach 

external knowledge plays an important and yet supplementary role in the generation of new 

technological knowledge (Griliches, 1979, 1990, 1992). Moreover its recipients are mainly viewed 

as the passive beneficiary of knowledge leaking from other firms (Feldman, 1999). A large body of 

empirical evidence has subsequently confirmed that external knowledge is an essential input into 

the generation of new knowledge (Adams, 1990) The interplay between internal knowledge, which 

also increases a firm’s absorptive capacity, and knowledge externalities may increase the firm’s 

propensity to innovate (Smit et al., 2013) and productivity (Marrocu et al., 2012). 

 

The characteristics of the regional context into which firms are located play an important role in 

assessing the actual weight of absorption costs. The composition of the knowledge pools to which 

co-localized firms have access plays an important role (Grillitsch et al., 2013; Camagni and 

Capello, 2013). Technological knowledge cannot be regarded as a homogeneous pile but rather as a 

composite bundle of highly differentiated and idiosyncratic elements that are qualified by specific 

relations of interdependence and interoperability. This approach enables to identify the extent to 

which the generation of new technological knowledge in a field depends upon the contributions of 

knowledge inputs stemming from other fields: a new knowledge item exhibits high levels of 

compositeness when it relies upon a large number of other knowledge fields (Antonelli, 2011). The 

quality of the local pools of knowledge in other words matters as well as its sheer size. The larger is 

the coherence of the local knowledge base and shorter is the distance between different types of 
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knowledge, the higher is the probability that they can be combined together (Saviotti, 2004 and 

2007; Kraft, Quatraro, Saviotti, 2009; Quatraro 2010). 

 

The analysis of a knowledge cost function that takes into account the role of the internal stocks of 

knowledge and the local pools of external knowledge enables to consider again and yet from quite a 

different perspective two standard assumptions of the economics of innovations i.e. the well-known 

Schumpeterian and Marshallian hypotheses. Let us consider them in turn.  

 

a) the Schumpeterian hypothesis. Joel Mokyr (1990:267) has recently masterly summarized 

Schumpeterian hypothesis as follows ‘large firms with considerable market power, rather than 

perfectly competitive firms are the ‘most powerful engine of technological progress’’. Schumpeter 

with his Capitalism, Socialism and Democracy went actually so far as to claim that perfect 

competition is not only impossible but inferior’ (Schumpeter 1942:106). The Schumpeterian 

hypothesis has fed a long lasting theoretical debate and the large empirical provided controversial 

evidence on the actual advantages of large firms with respect to smaller ones in the rates of 

introduction of innovations. The results of the empirical studies in different sectors, historic periods, 

countries and regions have not provided conclusive evidence (Link and Siegel, 2007). According to 

our approach, we articulate the more specific hypothesis, that firms with a larger stock of internal 

knowledge have indeed an important advantage on firms with no internal stocks. The advantage in 

other words stems specifically from the effects of knowledge cumulability and are specific to the 

size of the stock of knowledge 

 

b) the Marshallian hypothesis. According to the Marshallian hypothesis, firms located in large 

industrial districts have better chances to access knowledge spillovers and feed their own 

knowledge generation costs. In large districts firms have better access to external knowledge and 

can substitute expensive R&D activities for the cheap external one. The size of the district favours 
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the introduction of technological innovations at low costs. According to our approach, based upon 

the analysis of the composition of the local pools of knowledge that yield knowledge externalities, 

knowledge externalities are all the more effective, the larger are the levels of coherence of the local 

knowledge base.  

 

The following knowledge cost function (1) provides the general frame of our approach: 

 

CKit=R&DitKNOWLEDGEBASEit EXTERNAL KNOWLEDGEit)           (1)                                     

 

Equation (1) provides a suitable specification of the knowledge cost function, that accommodates, 

next to the role of R&D expenditures, the appreciation of the burden of knowledge associated with 

the knowledge base of each firms in terms of the levels of the stock of knowledge in the generation 

of new knowledge, the identification of the key role of knowledge external to each firm but 

available in regional proximity. 

 

 

3. EMPIRICAL EVIDENCE 

 

3.1 Dataset 

 

Our source of data is the IPER
1
 database, which collects information on 3382 active companies 

listed on the main European markets (UK, Germany, France, Italy and the Netherlands). The IPER 

database has been built by matching information from multiple sources of data. Our main source of 

                                                 
1
 The implementation of the IPER database has been financed by the Collegio Carlo Alberto, under 

the IPER project. 
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market and accounting data is Thomson Datastream, which delivers worldwide economic and 

financial time series data. To obtain additional relevant variables, we include in the dataset 

information collected from AMADEUS by Bureau Van Dijk, which contains financial information 

on European companies. In order to match information from the two databases described above, we 

used the ISIN code, the International Securities Identification Number (ISIN) which uniquely 

identifies a security. 

 

We also use data from the OECD REGPAT database, which provides regional information on the 

addresses of patent applicants and inventors as well as on technological classes cited in patents 

granted by the European Patent Office (EPO) and the World Intellectual Property Organization 

(WIPO), under the Patent Co-operation Treaty (PCT), from 1978 to 2006. In order to match the 

firm level data with data on patents, we draw on the work of Thoma et al. (2010), which develops a 

method for harmonization and combination of large-scale patent and trademark datasets with other 

sources of data, through standardization of applicant and inventor names. The new evidence about 

the actual meaning of patent citations, often included by patent officers to better specify the borders 

of the domain of the intellectual property right, rather than its quality, suggests to use the raw 

evidence of the number of patents with no attempt to try and elaborate misleading quality indicators 

(Van Zeebroeck, 2011; Van Zeebroeck and van Pottelsberghe 2011). 

 

Finally, we pooled the dataset by adding industry level information from the STAN database, which 

provides information at the industry level for the OECD countries. As STAN is based on the ISIC 

revision 3 sectoral classifications and Thomson Datastream uses the four digit level ICB industry 

classification, we provide in Appendix A the sectoral concordance table used to link the two 

classifications. 
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Our final dataset includes active companies listed on the main European financial market that 

submitted at least one patent application to the EPO in the period analysed.  Table 1 reports the 

sample distribution by macro-sector classes. High and medium-high technology firms account for 

around 32% and 45% of observations, respectively. Medium low and low technology firms account 

for 4% and 9% respectively, while knowledge intensive firms represent some 10% of observations.  

 

Table 1 about here 

 

 

3.2 Methodology and Variables 

 

Our estimating equation is the following (2): 

 

                                                                          

                          ∑   ∑                                                                              (2) 

 

Equation (2) has been estimated using a fixed effects estimator. 

 

In Equation (2) the dependent variable for the firm i at time t is the cost of knowledge output 

measured by the ratio of the firm current R&D expenditures to the number of patents delivered and 

it is explained by three set of independent variables that are respectively the internal expenses in 

R&D, the burden of the knowledge base of each firm as defined by the size of the knowledge stock, 

and the composition of external knowledge in terms of variety, complementarity and similarity. 
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More precisely, on the right hand side, the first set of variables considers R&D, i.e. the current 

research efforts and activities funded by each firm at time t-1, measured as the ratio of R&D 

expenditures to total assets in logarithms. In order to appreciate the effects of the stocks of internal 

knowledge of firms, we have included the variable PStock measured in terms of the number of 

patents held by each firm. This is computed by applying the permanent inventory method (PIM) to 

patent applications. We calculate it as the cumulated stock of patent applications using a rate of 

obsolescence of 15% per annum
2
: 

 

            ̇  (   )                  (3) 

 

where ith


is the flow of patent applications and δ is the rate of obsolescence. Moreover, we include 

the variable Size, measured as the log of employees’ number for firm i at time t-1. 

 

We do include other variables to articulate the different facets of the knowledge that is external to 

each firm and made accessible by proximity with firms co-localized in the same region. The first 

variable is RegPStock, that is the log of patents stock (PIM) in the same region (NUTS2) of firm i at 

time t-1. The method used for computing this variable is the same used for PStock.  

 

We further include other variables proxying for variety, complementarity and similarity. These 

indicators rest on the recombinant knowledge approach. In order to provide an operational 

                                                 
2
 A 15% obsolescence rate is the most common value used in the literature (see, for example, Nesta, 

2008; Colombelli et al. 2013). As a robustness check we also experimented with alternative 

obsolescence rates. We found that the obsolescence rate value makes little difference in empirical 

estimations. 
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translation of such concepts one needs to identify both a proxy for the bits of knowledge and a 

proxy for the elements that make their structure. We consider patents as a proxy for knowledge, and 

then look at technological classes to which patents are assigned as the constituting elements of its 

structure, i.e. the nodes of the network representation of recombinant knowledge. Each 

technological class j is linked to another class m when the same patent is assigned to both of them. 

The higher is the number of patents jointly assigned to classes j and m, the stronger is this link. 

Since technological classes attributed to patents are reported in the patent document, we will refer 

to the link between j and m as the co-occurrence of both of them within the same patent document.  

 

On this basis we calculated the following three key characteristics of firms’ knowledge bases: 

 

a) Knowledge variety (KV) measures the degree of technological diversification of the 

knowledge base. It is based on the informational entropy index. We thus include in equation (2) 

RegTV, as a measure of the regional total variety, RegRTV and RegUTV, measuring the related and 

unrelated variety respectively, (see Appendix B for the methodological details). 

b) Knowledge coherence (COH) measures the degree of complementarity among technologies. 

It is measured by means of the RegCOH index (see Appendix B). 

c) Cognitive distance (CD) expresses the dissimilarities amongst different types of knowledge 

and is measured using the RegCD variable (see Appendix B). 

 

The adoption of these variables marks an important step forward in the operational translation of 

knowledge creation processes. In particular, they allow for a better appreciation of the collective 

dimension of knowledge dynamics. Knowledge is indeed viewed as the outcome of a combinatorial 

activity in which intentional and unintentional exchange among innovating agents provides the 

access to external knowledge inputs (Fleming and et al., 2007).  
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The recombinant knowledge approach provides indeed a framework to represent the internal 

structure of regional knowledge bases as well as to enquire into the effects of their evolution. If 

knowledge stems from the combination of different technologies, knowledge structure can be 

represented as a web of connected elements. The nodes of this network stand for the elements of the 

knowledge space that may be combined with one another, while the links represent their actual 

combinations. The frequency with which two technologies are combined together provides useful 

information on the basis of which one can characterize the internal structure of the knowledge base 

according to the average degree of complementarity and proximity of the technologies which 

knowledge bases are made of, as well as to the variety of the observed pairs of technologies.  

 

The dynamics of technological knowledge can therefore be understood as the patterns of change in 

its own internal structure, i.e. in the patterns of recombination across the elements in the knowledge 

space. This allows for qualifying both the cumulative character of knowledge creation and the key 

role played by the properties describing knowledge structure, as well as for linking them to the 

relative stage of development of the regional technological trajectory (Dosi, 1982; March, 1991; 

Saviotti, 2004 and 2007; Colombelli, Krafft, Quatraro, 2013; Quatraro, 2010). 

 

We finally include Size, measured by means of the employees’ number, to control for firm size, and 

time dummies in order to control for time effects.  

 

In order to check further the robustness of our empirical analysis with respect to the role of the 

external knowledge, we also estimated an extended model including the patenting activities of firms 

localized outside the firm’s region (WRegPStock) Here WRegPStock aims at capturing the role of 

the sources of external knowledge that are far away from firm i. The variable WRegPStock has been 

computed as the log of patents stock (PIM) in the NUTS2 regions of the EU-24 member states, 
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weighted using a row-normalized inverse distance matrix so as to appreciate the contribution of 

knowledge produced in regions close to firm’s i region at time t-1. 

 

For each variable the measurement method is defined in Table 2, while descriptive statistics are 

reported in Table 3. The correlation matrix can be found in Table 4.  

 

Table 2, 3 and 4 about here 

 

3.3 Results 

The results of the fixed effects regression estimations for Equation (2) are reported in Table 5. The 

Hausmann test, comparing the results yield with the fixed effects model with those obtained from 

the random effects regression model, indicates that the fixed effects model is a better fit for our 

regressions. In order to cope with multicollinearity among the knowledge-related variables, column 

1 shows the results for the baseline equation that only includes variables measuring the internal 

activities performed by each firm in terms of R&D expenditure and patents stock. Columns 2 to 5 

include also the variables proxying for the size and composition of the external pool of knowledge. 

More precisely, the results of the model including the RegTV variable are presented in column 2. 

Columns 3 and 4 show the results for the RegRTV and RegUTV variables, respectively, while 

column 5 includes the two latter variables in the same model. 

 

Table 5 about here 

 

The results of the econometric exercise confirm the hypotheses that, next to R&D expenses, the 

knowledge cost function depends upon the role of both the internal stocks of knowledge and the 

local pools of external knowledge.  
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The intensity of R&D expenses is positively and significantly related with the cost of patents in all 

the estimations. This is quite in line with the expectations, being R&D intensity a measure of the 

technological efforts of the firm. The stock of patents (PStock) of each firm exerts instead a strong 

negative and significant effect (p<0.01 in all estimations) on the costs of patents. This is also 

consistent with expectations, as the dependent variable is a measure of the unit costs of patents, 

which is likely to decrease as patents increase, other things being equal. 

 

The results of the variables that account for the regional knowledge base differ whether they 

concern the size, measured using the stock of patents or the knowledge structure in terms of variety 

(RegTV), complementarity (RegCD) and similarity (RegCOH). In particular, the size of the regional 

knowledge stock (RegPStock) exerts a negative and significant effect on the cost of knowledge in 

two out of four estimations (column 2 and 3)
3
. This would suggest that in contexts wherein 

companies that can access large pools of external knowledge save on the costs of their internal 

knowledge generating activities. As far as knowledge variety is concerned, the results reported in 

column 2 show that the RegTV is positively and significantly related to the firm cost of patents. Let 

us recall that this index provides a measure of the differentiation of observed combinations of 

technologies in regions’ knowledge bases. The results thus indicate that the higher is the variety in 

the combination of technologies in the firm region the higher is the cost associated to the firm 

innovation output. This might be due to the fact that firms need to put higher efforts in trying and 

                                                 
3
 In columns (4) and (5) the regional knowledge stock is no longer significant. However, by looking 

at table 4, one may notice that such variable has high correlation with regional related and unrelated 

variety. This may affect the significance level of RegPStock. For the same reason, we also run the 

regressions in columns (4) and (5) by dropping regional knowledge stock, so as to check the 

robustness of the results concerning related and unrelated variety. The results actually do not 

change. The tables are available from the authors. 



 15 

experimenting new combinations of technologies distributed across a wide range of technology 

domains. When we disentangle the effects of related and unrelated variety we find that only the 

latter (RegUTV) is significant. The procedure by which the index is derived (see Appendix B) 

reveals that the concepts of ‘related’ and ‘unrelated’ variety refer basically to the belonging of 

technologies to the same technological domain, as defined by the classification system used (in our 

case the International Patent Classification). The positive and significant impact of RegUTV on the 

cost of knowledge would imply that an increase in the regional variety of technologies that belong 

to very different technological domains is likely to increase the costs of knowledge generating 

activities at the firm level. The unit cost of patents increases as an effect of the higher volume of 

resources that the firm needs to commit in order to better absorb the locally available external 

knowledge.  

 

Such result is confirmed by the evidence concerning the effect of regional cognitive distance. The 

coefficient is indeed positive and significant across all of the four models in which it is included. 

The cognitive distance may be interpreted as an index of the average dissimilarity amongst the 

different technological competences that make up the regional knowledge base. When the local 

knowledge which firms may access, is featured by technologies which are far away from one 

another in the technological space, firms need to strengthen their absorptive capacity by widening 

the scope of technological domains that they can master in order to take advantages of knowledge 

spillovers in the generation of new knowledge. This implies increasing volumes of firm-level R&D 

expenditures per single patent. 

 

As a robustness check, we further estimated an extended model including the patenting activities of 

firms localized outside the firm’s region (WRegPStock). Table 6 reports the results of the fixed 

effects regression estimations for the equations including WRegPStock. These results confirm the 

robustness of our analysis as regards the variables included in the baseline model. WRegPStock 
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turns out to be negatively and significantly related to the cost of knowledge in all regressions. This 

result confirms that firms are able to absorb, not only knowledge generated in close proximity to the 

firm, but also external knowledge generated very far from it and, consequently, to save on the costs 

of their internal knowledge generating activities. 

 

Table 6 about here 

 

4. CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH 

 

The economics of knowledge has made a major progress with the identification of the knowledge 

generation function. This empirical evidence has shown that the relationship between inputs and 

outputs of the innovative activity across firms exhibits a huge variance. With given levels of R&D 

inputs, the actual amount of knowledge generated by each firm differs. A second, important step 

along this line of analysis can be done with the analysis of the knowledge cost function. This 

approach can help understanding why the cost of innovation is far from homogeneous. This 

evidence has been rarely detected in the literature and poorly investigated.  

 

The study of the knowledge cost function enables to analyze the role of the different cost items that 

concur to the definition of the knowledge output. This innovative approach enables to explore in a 

novel perspective two important hypotheses that are at the core of the economics of innovation. 

Namely the so-called Schumpeterian hypothesis according to which firms with larger stock of 

internal knowledge are superior in the generation of new knowledge and the so-called Marshallian 

hypothesis according to which knowledge externalities exert positive effective according not only 

to the density but also to the levels of coherence of the local pools of knowledge.   
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The empirical analysis of the costs of innovation, based upon a panel of companies listed on UK 

and the main continental Europe financial markets (Germany, France and Italy) for the period 1995 

– 2006, for which information about patents have been gathered, has considered the unit costs of 

patents on the right hand side, and on the left hand side next to R&D expenditures, the stock of 

knowledge internal and external to each firm. The results confirm that the stock of internal 

knowledge and the access to external knowledge play a key role in assessing the actual capability of 

each firm to generate new technological knowledge and hence in reducing the costs of innovation. 

 

The results of our analysis also bear important implications for technology policy at the regional 

level as well as for the strategic management of the firm. Technology policy represents indeed one 

of the key levers that policymakers may use to trigger local development. Due to the collective and 

systemic nature of innovation activities, the choice of the correct policy mix is of crucial 

importance. The promotion of specific technological domains at the local level may affect the 

effectiveness of knowledge generation processes of incumbents firms. In this direction the attempts 

to foster the emergence of technologies which break the competences accumulated in the region are 

likely to increase the average level of unrelated variety and cognitive distance, and as a 

consequence, increase the average cost per patent. 

 

On the firm’s side, the composition of technological activities at the local level becomes a key 

variable that firms should take into account in their decisions concerning the location of their R&D 

laboratories. The location in areas featured by established technological trajectories is indeed likely 

to make the search process for new combinations of technologies less costly for innovating firms as 

compared to the location in areas marked by initial stages of new technological trajectories.  
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Table 1 Sample distribution in macrosectors 

 

Macro-sector Freq. Percent Cum. 

HT 283 31.83 31.83 

MHT 403 45.33 77.17 

MLT 39 4.39 81.55 

LT 77 8.66 90.21 

KIS 85 9.56 99.78 

LKIS 2 0.22 100.00 

Total 889 100.00 

  

 

  



 26 

Table 2 Variables measurement method 

 

VARIABLES  

PCOST Log (R&D / N Patents) for firm i at time t 

R&D Log (R&D / Total assets) for firm i at time t-1 

Size Log of employees number for firm i at time t-1 

PStock Log of patents stock (PIM) for firm i at time t-1 

RegPStock Log of patents stock (PIM) in the same region (NUTS2) of firm i at time t-1 

WRegPStock Log of patents stock (PIM) belonging to EU-24 member states other than that 

of firm i at time t-1, weighted using a row-normalized inverse distance matrix 

RegTV Log of total variety in the region (NUTS2) of firm i at time t-1 

RegRTV Log of related variety in the region (NUTS2) of firm i at time t-1 

RegUTV Log of unrelated variety in the region (NUTS2) of firm i at time t-1 

RegCD Log of cognitive distance in the region (NUTS2) of firm i at time t-1 

RegCOH Log of knowledge coherence in the region (NUTS2) of firm i at time t-1 
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Table 3 Descriptive statistics 

 

Variable Obs Mean Std.Dev. Min Max 

      PCOST 891 9.304 1.704 2.996 15.547 

R&D 891 -3.350 1.127 -7.777 0.420 

Size 891 8.894 2.324 1.386 13.090 

PStock 891 3.005 1.747 -0.650 7.519 

RegPStock 891 8.841 1.338 4.853 10.892 

WRegPStock 891 7.632 0.265 6.988 8.268 

RegTV 891 2.182 0.131 1.653 2.397 

RegRTV 891 1.882 0.156 1.232 2.129 

RegUTV 891 0.824 0.110 0.269 0.991 

RegCD 891 -0.263 0.020 -0.368 -0.223 

RegCOH 891 1.786 0.541 0.660 3.846 
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Table 4 Correlation matrix 

 

 

PCOST R&D Size PStock  RegPCap WRegPStock RegTV RegRTV RegUTV RegCD RegCOH 

      

 

     PCOST 1.000           

R&D 0.029 1.000          

Size 0.555 -0.385 1.000         

PStock 0.134 -0.005 0.578 1.000        

RegPStock 0.218 -0.070 0.270 0.248 1.000       

WRegPStock 0.027 0.038 -0.055 0.207 -0.045 1.000      

RegTV 0.143 0.008 0.219 0.202 0.821 0.026 1.000     

RegRTV 0.143 -0.011 0.247 0.225 0.814 0.055 0.983 1.000    

RegUTV 0.091 0.084 0.015 0.015 0.520 -0.107 0.667 0.519 1.000   

RegCD 0.174 -0.133 0.013 0.046 -0.052 0.448 -0.172 -0.139 -0.229 1.000  

RegCOH 0.082 0.079 -0.009 0.040 0.292 -0.262 -0.117 -0.138 0.023 -0.107 1.000 
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Table 5 Results  

 

Fixed effects (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

R&D 0.143* 0.136* 0.146** 0.133* 0.129* 

 (0.0736) (0.0736) (0.0736) (0.0739) (0.0739) 

Size 0.340*** 0.346*** 0.340*** 0.341*** 0.348*** 

 (0.107) (0.107) (0.108) (0.107) (0.107) 

PStock  -0.396*** -0.361*** -0.356*** -0.375*** -0.371*** 

 (0.0712) (0.0730) (0.0732) (0.0734) (0.0734) 

RegPStock  -0.783** -0.714* -0.443 -0.632 

  (0.386) (0.391) (0.369) (0.392) 

RegTV  2.811**    

  (1.161)    

RegRTV   1.500  1.311 

   (0.931)  (0.933) 

RegUTV    1.964** 1.843** 

    (0.880) (0.883) 

RegCD  10.40** 10.11** 10.63** 10.66** 

  (4.135) (4.142) (4.143) (4.141) 

RegCOH  0.282 0.208 0.0623 0.214 

  (0.243) (0.247) (0.221) (0.246) 

Constant 10.44*** 13.38*** 16.17*** 15.21*** 14.26*** 

 (0.987) (4.027) (3.756) (3.800) (3.856) 

      

Observations 891 891 891 891 891 

R-squared 0.354 0.365 0.362 0.365 0.366 

Number of id 179 179 179 179 179 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 6 Results  

 
 (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

R&D 0.143* 0.125* 0.132* 0.118 0.117 

 (0.0736) (0.0738) (0.0738) (0.0740) (0.0740) 

Size 0.340*** 0.357*** 0.352*** 0.356*** 0.360*** 

 (0.107) (0.107) (0.108) (0.107) (0.107) 

PStock  -0.396*** -0.357*** -0.353*** -0.370*** -0.368*** 

 (0.0712) (0.0729) (0.0731) (0.0732) (0.0733) 

RegPStock  -0.660* -0.572 -0.354 -0.497 

  (0.391) (0.397) (0.370) (0.398) 

WRegPStock  -4.024* -4.436* -4.778** -4.299* 

  (2.297) (2.301) (2.244) (2.297) 

RegTV  2.359**    

  (1.188)    

RegRTV   1.101  0.929 

   (0.952)  (0.954) 

RegUTV    1.871** 1.795** 

    (0.879) (0.882) 

RegCD  8.767** 8.348** 8.733** 8.941** 

  (4.233) (4.233) (4.228) (4.234) 

RegCOH  0.239 0.159 0.0581 0.166 

  (0.244) (0.247) (0.221) (0.247) 

Constant 10.44*** 44.24** 49.81*** 51.19*** 46.92*** 

 (0.987) (18.07) (17.85) (17.32) (17.86) 

      

Observations 891 891 891 891 891 

R-squared 0.354 0.368 0.366 0.369 0.370 

Number of id 179 179 179 179 179 

Standard errors in parentheses 

 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix A  

 

Sectoral classification and concordance 

 

Macro sectors Sector 
STAN 

(ISIC 3) 
Datastream 

 Pharmaceuticals  2423 4577 

High-technology manufactures Office, accounting and computing machinery 30 9572, 9574 

HT Radio, television and communication equipment 32 
2737, 3743, 3745,3747,9576, 

9578 

 Medical, precision and optical instruments 33 4535, 4537, 4573 

 Aircraft and spacecraft 353 2713, 2717 

 Chemicals excluding pharmaceuticals 24ex2423 1353, 1357 

Medium-high technology manuf. Machinery and equipment, n.e.c. 29 573, 583, 2757 

MHT Electrical machinery and apparatus, nec 31 2733, 3722 

 
Motor vehicles, trailers and semi-trailers and other 

transport equipment, aircraft excluded 

34, 351, 

352-359 
2753, 3353, 3355 

 Coke, refined petroleum products and nuclear fuel 23 533, 537, 577, 587 

Medium-low technology manuf. 
Rubber, plastics products and other non-metallic 

mineral products 
25-26 2353, 2723, 3357 

MLT Basic metals and fabricated metal products 27-28 1753, 1755, 1757 

 Food products and beverages 15 3533, 3535, 3537, 3577 

 Tobacco products 16 3785 

Low technology manufactures Textiles, textile products, leather and footwear 17-19 3763, 3765 

LT Pulp, paper and paper products 21 1737 

 Printing and publishing 22 5557 

 Manufacturing nec and recycling 36-37 2727, 3724, 3726, 3767 

 Post and telecommunications 64 5553, 6535, 6575 

 Financial intermediation (excl insurance, pension) 65 8355, 8773, 8779 

Knowledge intensive sectors Insurance and pension funding 66 8532, 8534, 8536, 8538, 8575 

KIS Activities related to financial intermediation 67 8775, 8777, 8985, 8995 

 Real estate activities 70 
8633, 8637, 8671, 8672, 8673, 

8674, 8675, 8676, 8677, 8771 

 Renting of m&eq and other business activities 71-74 
2791, 2793, 2795, 2799, 5555, 

9533, 9535, 9537 

 Health and social work 85 4533 

 Recreational cultural and sporting activities 92 5752, 5755 
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Appendix B 

Knowledge variety measured by the informational entropy index 

 

Knowledge variety is measured using the information entropy index
4
. Entropy measures the degree 

of disorder or randomness of the system; systems characterized by high entropy are characterized 

by high degrees of uncertainty (Saviotti, 1988). The entropy index measures variety. Information 

entropy has some interesting properties (Frenken and Nuvolari, 2004) including 

multidimensionality.  

Consider a pair of events (Xl, Yj), and the probability of their co-occurrence plj. A two dimensional 

total variety (TV) measure can be expressed as follows: 
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Let the events Xl and Yj be citation in a patent document of technological classes l and j 

respectively. Then plj is the probability that two technological classes l and j co-occur within the 

same patent. The measure of multidimensional entropy, therefore, focuses on the variety of co-

occurrences or pairs of technological classes within patent applications. 

The total index can be decomposed into ‘within’ and ‘between’ parts whenever the events being 

investigated can be aggregated into a smaller number of subsets. Within-entropy measures the 

average degree of disorder or variety within the subsets; between-entropy focuses on the subsets, 

measuring the variety across them.  

It can be easily shown that the decomposition theorem holds also for the multidimensional case 

(Frenken and Nuvolari, 2004). Let the technologies i and j belong to the subsets g and z of the 

classification scheme respectively. If one allows lSg and jSz (g = 1,…,G; z = 1,…, Z), we can 

write:  

                                                 
4
 For the sake of clarity the region and time indexes are omitted. 
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Which is the probability to observe the couple lj in the subsets g and z, while the intra subsets 

variety can be measured as follows: 
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The (weighted) within-group entropy can be finally written as follows: 


 


G

1g

Z

1z

gzgzHPRKV

           (2)

 

Between group (or unrelated variety) can instead be calculated by using the following equation: 
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According to the decomposition theorem, we can rewrite the total entropy H(X,Y) as follows: 
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When considering the International Patent Classification (IPC), the whole set of technological 

classes can be partitioned on the basis of macro technological fields. For example, two 4-digit 

technologies A61K and H04L belong respectively to the macro classes A and H. In our notation, 

H04L would be the technology l and H the macroset Sg. Similarly A61K would be the technology j 

and A the macroset Sz.  

Within-group entropy (or related variety) measures the degree of technological differentiation 

within the macro-field, while between-group variety (or unrelated variety) measures the degree of 

technological differentiation across macro-fields. The first term on the right-hand-side of equation 

(2) is the between-entropy, the second term is the (weighted) within-entropy. 

We can label between- and within-entropy respectively as unrelated technological variety (UTV) 

and related technological variety (RTV), while total information entropy is referred to as general 

technological variety (Frenken et al., 2007; Boschma and Iammarino, 2009). This means that we 
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consider variety as a global entity, but also as a new combination of existing bits of knowledge 

versus variety as a combination of new bits of knowledge. When variety is high (respectively low), 

this means that the search process has been extensive (respectively partial). When unrelated variety 

is high compared to related variety, the search process is based essentially on the combination of 

novel bits of knowledge rather than new combinations of existing bits of knowledge.
5
 

 

The knowledge coherence index 

 

Agents grounded in local contexts need to combine or integrate many different pieces of knowledge 

to produce a marketable output. Competitiveness requires new knowledge and knowledge about 

how to combine old and new pieces of knowledge. We calculate the coherence of NUTS3 regions’ 

knowledge bases, defined as the average relatedness or complementarity of a technology chosen 

randomly within the firm’s patent portfolio with respect to any other technology (Nesta and 

Saviotti, 2005, 2006; Nesta, 2008; Quatraro, 2010)
6
.  

                                                 
5
 It must be noted that by measuring the degree of technological differentiation, the calculation of 

information entropy is affected by the number of technological classes observed, but not necessarily 

by the number of technological classes in the classification itself. Indeed, the introduction of new 

technological classes that are not observed does not affect the calculations in that they would be 

events with zero probability. Entropy rises or falls according to the number of technological classes 

that are actually observed in the patent sample. It reaches the maximum if all events are 

equiprobable, i.e. if all technological classes show the same relative frequency. If probabilities are 

unevenly distributed, one can have very low values of information entropy even if a very large 

number of technologies is observed.  

6
 The function used to measure coherence is completely different from the one used to measure 

informational entropy. The fact that in both cases the co-occurrence of technological classes enters 
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Obtaining the knowledge coherence index requires a number of steps. First of all, we need to 

calculate the weighted average relatedness WARl of technology l with respect to all other 

technologies in the regional patent portfolio. This measure builds on the measure of technological 

relatedness τlj (Nesta and Saviotti, 2005, 2006). We start by calculating the relatedness matrix. The 

technological universe consists of k patent applications across all sampled firms. Let Plk = 1 if the 

patent k is assigned the technology l [l= 1, …, n], and 0 otherwise. The total number of patents 

assigned to technology l is  k lkl PO . Similarly, the total number of patents assigned to 

technology j is  k jkj PO . Since two technologies can occur within the same patent,  jl OO , 

and thus the observed the number of observed co-occurrences of technologies l and j is 

                                                                                                                                                                  

the calculations does not mean that both functions must lead to the same result. The informational 

entropy function measures the variety of the set, corresponding to the number of distinguishable 

entities it contains. The coherence function was introduced by Teece et al (1994) to measure the 

coherence of a firm based on its products. Nesta and Saviotti (2005, 2006) have subsequently 

adapted it to measure the coherence of the knowledge base of a firm. The coherence function 

measures the extent to which the distinguishable entities in the set (in our case the types of 

knowledge corresponding to different technological classes) are used together irrespective of the 

number of entities contained in the set. The two functions are in principle independent since they 

use the same type of data to calculate different properties of the same system. The mathematical 

independence of the two functions does not imply that the evolution of the corresponding properties 

is independent. Thus, if new technological classes are introduced into the knowledge base of a 

sector (an increase in the number of distinguishable entities of the set) there is no reason to expect 

the capacity of firms to combine the new types of knowledge to be created instantly. We expect that 

as new types of knowledge are introduced into the knowledge base of a sector, the firms will slowly 

learn to combine them thus leading to a temporary fall in coherence. 
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 k jklklj PPJ . Applying this relationship to all possible pairs yields a square matrix  (n  n) in 

which the generic cell is the observed number of co-occurrences:  
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We assume that the number xij of patents assigned to technologies i and j is a hypergeometric 

random variable of the mean and variance: 
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If the observed number of co-occurrences Jij is larger than the expected number of random co-

occurrences ij, then the two technologies are closely related: the fact that the two technologies 

occur together in the number of patents xij is not common or frequent. Hence, the measure of 

relatedness is given by the difference between the observed and the expected numbers of co-

occurrences, weighted by their standard deviation: 

lj

ljlj

lj

J







           (8) 

Note that this measure of relatedness has no lower or upper bounds:   ;lj . Moreover, the 

index shows a distribution similar to a t-test, so that if  96.1;96.1 lj , we can safely assume the 

null hypothesis of non-relatedness of the two technologies i and j. The technological relatedness 

matrix ’ can be considered a weighting scheme to evaluate the technological portfolio of regions. 

Following Teece et al. (1994), WARl is defined as the degree to which technology l is related to all 

other technologies jl in the region’s patent portfolio, weighted by patent count Pjt: 
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Finally the coherence of the region’s knowledge base at time t is defined as the weighted average of 

the WARlt measure: 
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Note that this index implemented by analysing the co-occurrence of technological classes within 

patent applications, measures the degree to which the services rendered by the co-occurring 

technologies are complementary, and is based on how frequently technological classes are 

combined in use. The relatedness measure τlj indicates that utilization of technology l implies use 

also of technology j in order to perform specific functions that are not reducible to their independent 

use. This makes the coherence index appropriate for the purposes of this study and marks a 

difference from entropy, which measures technological differentiation based on the probability 

distribution of pairs of technological classes across the patent sample
7
. 

                                                 
7
 To make it clear, informational entropy is a diversity measure which allows to accounting for 

variety, i.e. the number of categories into which system elements are apportioned, and balance, i.e. 

the distribution of system elements across categories. (Stirling, 2007). In this sense entropy does not 

say anything about the relationships between technological classes, but provides a measure of the 

diversity of technological co-occurrences, suggesting whether in a sector most of the observed co-

occurrences focus on a specific couple or on the contrary whether the observed co-occurrences 

relate to a large number couples. In this framework, related and unrelated variety provide a measure 

of the extent to which observed variety applies to couples of technologies that belong to the same 

macro domain or to different macro-domains. One would expect established technologies to be 

characterized by relatively low variety of co-occurrences, insofar as the recombination focus on a 

relatively small numbers of technological classes that have proved to be particularly fertile. On a 

different ground, the coherence index is based on a normalized measure of how much each 
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If the coherence index is high, this means that the different pieces of knowledge have been well 

combined or integrated during the search process. Due to a learning dynamics, agents in the regions 

have increased capability to identify the bits of knowledge that are required jointly to obtain a given 

outcome. In a dynamic perspective, therefore, increasing values for knowledge coherence are likely 

to be associated with search behaviours mostly driven by organized search within well identified 

areas of the technological landscape. Conversely, decreasing values of knowledge coherence are 

likely to be related to search behaviours mostly driven by random screening across untried areas of 

the technological landscape in the quest for new and more profitable technological trajectories. 

The cognitive distance index 

 

We need a measure of cognitive distance (Nooteboom, 2000) to describe the dissimilarities among 

different types of knowledge. A useful index of distance can be derived from technological 

proximity proposed by Jaffe (1986, 1989), who investigated the proximity of firms’ technological 

portfolios. Breschi et al. (2003) adapted this index to measure the proximity between two 

technologies
8
.  

                                                                                                                                                                  

observed technology is complementary to all other technologies in the analyzed patents. In this 

sense it cannot be understood as a measure of diversity. The relatedness index indeed provides a 

measure of the degree to which two technologies are actually jointly used as compared to the 

expected joint utilization. The index allows to establishing a relationship of complementarity 

between the technologies in the analyzed patents. Based on the relatedness measure (tau), the 

coherence index provides an aggregate description of the degree to which the observed technologies 

in a given sector are complementary to one another. 

8
 Cognitive distance is the inverse of similarity or the equivalent of dissimilarity. The measure of 

similarity has been introduced by biologists and ecologists to measure the similarity of biological 

species and to understand to what extent they could contribute to biodiversity. The same measure 
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Let us recall that Plk = 1 if the patent k is assigned the technology l [l= 1, …, n], and 0 otherwise. 

The total number of patents assigned to technology l is  k lkl PO . Similarly, the total number of 

patents assigned to technology j is  k jkj PO . We can, thus, indicate the number of patents that 

are classified in both technological fields l and j as:     ∑        . By applying this count of joint 

occurrences to all possible pairs of classification codes, we obtain a square symmetrical matrix of 

co-occurrences whose generic cell Vlj reports the number of patent documents classified in both 

technological fields l and j. 

Technologiocal proximity is proxied by the cosine index, which is calculated for a pair of 

technologies l and j as the angular separation or uncentred correlation of the vectors Vlm and Vjm. 

The similarity of technologies l and j can then be defined as follows: 

                                                                                                                                                                  

has been applied by Jaffe (1986) to the similarity of technologies. It is not the only possible 

measure of similarity but it is the most frequently used one. The rational for its use is starts from the 

assumption that when two technologies, i and j, can be combined with a third technology k, they are 

similar. We call this measure cognitive distance both because  the two terms are used as synonyms 

in the biological literature and, even more so, because cognitive distance is a concept used by Bart 

Nooteboom (2000) which has a number of very  interesting implications for firm behavior and 

performance. In particular, the cognitive distance between different firms is expected to affect the 

probability that they form technological alliances. Intuitively, the need for a firm to learn a 

completely new technology (discontinuity) will lead to the incorporation into the firm's knowledge 

base of new  patent classes, which would make the  knowledge base recognizably different from 

what it was at previous times. The dissimilarity of the knowledge base can be expected to keep 

rising with respect to the pre-discontinuity knowledge base until the technology lifecycle has 

achieved maturity, at which stage the knowledge base of the firm will have stabilized, thus leading 

to a fall in cognitive distance. 
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The idea behind the calculation of this index is that two technologies j and l are similar to the extent 

that they co-occur with a third technology m. Such measure is symmetric with respect to the 

direction linking technological classes, and it does not depend on the absolute size of technological 

field. The cosine index provides a measure of the similarity between two technological fields in 

terms of their mutual relationships with all the other fields. Slj is the greater the more two 

technologies l and j co-occur with the same technologies. It is equal to one for pairs of 

technological fields with identical distribution of co-occurrences with all the other technological 

fields, while it goes to zero if vectors Vlm and Vjm are orthogonal (Breschi et al., 2003)
9
. Similarity 

between technological classes is thus calculated on the basis of their relative position in the 

technology space. The closer technologies are in the technology space, the higher is Slj and the 

lower their cognitive distance (Engelsman and van Raan, 1991; Jaffe, 1986; Breschi et al., 2003). 

The cognitive distance between j and l can be therefore measured as the complement of their index 

of technological proximity:  

ljlj S1d           (12) 

Having calculated the index for all possible pairs, it needs to be aggregated at the regional level to 

obtain a synthetic index of distance amongst the technologies in the firm’s patent portfolio. This is 

done in two steps. First we compute the weighted average distance of technology l, i.e. the average 

distance of l from all other technologies.  
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9
 For Engelsman and van Raan (1991), this approach produces meaningful results particularly at a 

‘macro’ level, i.e. for mapping the entire domain of technology.  
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where Pj is the number of patents in which the technology j is observed. The average cognitive 

distance at time t is obtained as follows: 
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The cognitive distance index measures the inverse of the similarity degree among technologies. 

When cognitive distance is high, this is an indication of the increased difficulty or cost the firm 

faces to learn the new type of knowledge which is located in a remote area of the technological 

space. Increased cognitive distance is related to the emergence of discontinuities associated with 

paradigmatic shifts in the sector knowledge base. It signals the combination of core technologies 

with unfamiliar technologies. 

 

 

 

 


