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1 Introduction
This work is developed as a contribution to the study of productivity growth
using Total Factor Productivity (TFP) to asses technological change in
broad periods of time. TFP measurement entails multiple processes, and
this paper will be particularly focused on the Biased Technological Change
and it’s implications on conceptual and empirical aspects.

The main contributions of this paper are, on the first place, use the
Biased Technological Change (BTC) concept to explain long-term special-
ization patterns by bringing a novel interpretation of the indicator. Second,
is to show the dynamics of the BTC at a sectoral level. Finally, to explore
the determinants of the BTC. The main results show that the specialization
patterns are path dependent and that the use of this kind of bias is a key
element in the analysis of innovation cycles and economic trends.

The TFP measurement is acknowledged as a standard tool that allows
to interpret in a very synthesized way the effects of technology on the pro-
ductive structure of an economy. The mechanism behind it’s functioning is
based in calculate differences between a theoretical expected value of produc-
tivity and the actual value observed in the economy. Since the theoretical
model considers technological change as exogenous, the residual derived from
contrasting theoretical and empirical levels of productivity offer an idea on
how much the technological structure has been modified from one period to
another. Over the last 50 years, the measurements of the TFP evidence a
clear upwards tendency, suggesting that technological improvement is one
of the main reasons of global growth.
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Since the early works of Cobb-Douglas (1928), Douglas(1971) and par-
ticularly Solow (1956; 1979), the TFP methodology became a standard pro-
cedure on technological change measurement. Studies using this approach
proliferated during the 70‘s and they prevail until our days with very few
changes with respect to the original setup.

The application of TFP based methodologies was developed on different
aspects over the past decades. On the one hand, the relaxation of the main
assumptions derived from the use of a Cobb-Douglas production function
with constant returns to scale were modified to include increasing returns
to scale and non-multiplicative production relations (Dasgupta and Stiglitz,
1978; Krugman, 1990; Crepón, Duguet, & Mairesse, 1998; Raval, 2011).
This methods are, in comparison, more flexible and accurate for particular
situations than the traditional approach, although they are heterogeneous
in their formulations (in natura) and clearly fit to micro and sector specific
analysis instead of macro aggregated models.

On the other hand, one may find the efforts surrounding the original
model, mainly focused on diminish the amount of Solow’s residual, giving
birth to the empirical use of factor expanded production functions and multi-
factor productivity (MFP). This current maintains the restrictions of CRS,
but incorporates the role of intermediate inputs and capital-labour hetero-
geneities, among other improvements (Ark et.al., 2008; Mas et.al., 2008;
Timmer et.al, 2007; Mas and Quesada,2005). As a mirror of the case above,
the MFP approach applies the same production function to the analysis of
multiple sectors, being a relatively less-flexible model to analyse particular
situations.

Each of these perspectives show it’s own strengths and weak points,
whilst nowadays both are still in use to conduct productivity related re-
search, it is a matter of focus and objectives of a research the choice of one
or another. The strengths of each model, at least at a very general level,
are quite clear: the MFP is focused on long trends and macro comparisons
while the increasing returns to scale and non-multiplicative models are spe-
cific for certain sectors in a particular period of time, with low power on
inter-sectoral comparability.

This work will be subscribed on the macro aggregated perspective and
it will expose long trend dynamics comparing several sectors of a group of
countries. The reason behind the use of a CRS Cobb-Douglas production

2



function it is merely for simplicity and clarity of the main point of the work.
Future developments should incorporate the implications of the Biased Tech-
nological Change in more complex functional forms.

The rest of the paper will be organized as follows: the next section will
develop the Biased Technological Change from a theoretical perspective.
The third part will be focused on the characterization of the data used. The
fourth section will be dedicated to the econometric models and the results,
and finally, the last section will elaborate the final remarks.
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2 Theoretical Background
The study of Total Factor Productivity (TFP) dynamics has been intensively
studied since the early works of Solow (1956) and Cobb-Douglas (1928). Af-
ter the seminal contributions of Griliches (1967, 1968, 1979) and Acemoglu
(1998), the interpretation on the role of factors in TFP dynamics, specially
regarding the effect of knowledge diffusion in labor and capital became a
central research topic within economics.

The analysis of the determinants of Technological Change (TC) repre-
sented a challenge from it beginnings. The traditional approach considered
that exogenous forces affected technological change. It is known, however,
that specialization, as in the Smithian tradition, affects productivity levels,
and hence the technological dynamics. Through sectoral trends, it can be
seen that input prices of some activities perform different across time and
countries, implying that specialization is an important element of produc-
tivity dynamics. The effect of becoming specialized on a set of tasks can be
seen in the factor’s input prices, which iteratively change with the techno-
logical trajectory of each economy and determine future resource abundance
structures and specialisation cost opportunities. The more specialized one
economy is, the higher the returns of the output elasticities for that partic-
ular specialization pattern.

According to the traditional Solow’s vision (Solow, 1979), technological
change dynamics can be identified by the calculation of the difference be-
tween a theoretical model that calculate the (expected) outputs according
to the use of certain amount of factors, and the actual value that one find
in the real performance of that economy. The difference between the two
estimations (Solow’s “At”) offers a very generalized and aggregated idea of
the technological change over time: the gap existent from the expected out-
put to the actual value of it implies technical modifications on the factor’s
use, and hence technological change. This method calculates the so called
Solow’s residual, which is the mentioned difference, pointing a raw but ex-
tremely potent indicator of technological dynamics.

A technological shock may affect the movement of the isocuants in two
ways: the parallel translation and, our focus, the modification of the slopes.
According to the traditional theory (Solow, 1979) the effect of new tech-
nologies impact on the isocuants moving them in parallel directions towards
the origin. This make the factors produce more with the same resources or
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be cheaper to produce the same output. But when technical improvements
take place the isocuants slopes are also subject to change, since the new im-
provement imply new prices relations, and hence factor’s output elasticities
modifications (effect dodged by the assumption regarding the neutrality of
technology towards factors’ output). The process that explores the mea-
surement and behaviour of the isoquant’s slopes variations is denominated
Biased Techological Change (Antonelli, 2002; Antonelli, 2010; Antonelli and
Quatraro, 2010; Antonelli and Quatraro, 2014), and will be the main focus
of this work.

The TFP calculation consists in the empirical application of the Solow’s
residual measurements. The derivation of this indicator will relay on trans-
log transformations of the production function (Christensen, Jorgerson and
Law, 1973), mainly because of its benefits regarding the simpler calcula-
tions and a direct interpretations of its results. Departing from the raw
Cobb-Douglas macro approach Y = ALαKβ for, the trans-log derivation of
the production function becomes log(Ai,s,t) = log(Yi,s,t) − αi,s,tlog(Li,s,t) −
βi,s,tlog(Ki,s,t) with i, s, t representing country, sector and time variations.
The elements considered in the Cobb-Douglas representation are the typical
Y as output (gdp), L as labor, K, α and β as the output elasticities and A
as the residual.

Following the traditional methods on TFP calculations, the output elas-
ticity is not estimated within the model, but calculated with available data
assuming that αi,s,t =

PLL
Y =

wi,s,t.Li,s,t

Yi,s,t
, with w as wages of the labor force

(i.e. total compensations over total persons engaged) and α as the equiva-
lence between the marginal productivity of labour and the factor’s prices.

If technological shocks affect not only the total amount of output by a
given amount of factors but also the returns that each factor have, then
the Solow’s TFP doesn’t consider the complete effect of a technical change
because the biases of the output elasticity changes are not accounted.

The Bias Technological Change calculation (Antonelli and Quatraro,
2010; Antonelli and Quatraro, 2014; AQ now on) consists in developing
a two-step index. First, a derivation of one that fixes the effect of output
elasticities across time (called ”total technological change” in AQ) that will
be denominated Fixed Returns Technological Change (FRTC).
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The Fixed Returns Technological Change derivation can be expressed in
the trans-log form log(AFRTC

i,s,tn
) = log(Yi,s,tn)−αi,s,t0 log(Li,s,tn)−βi,s,t0 log(Ki,s,tn).

This index fixes the output-elasticities at t0 to isolate the variations of fac-
tors and output over time tn. The result of it consists in an estimation of
the technological change as if the factor’s output-elasticities remained fixed
in the period considered, allowing an explicit ceteris-paribus analysis of the
TFP variation.

Then, the Bias Technological Change consists in the difference between
the FRTC and the Solow’s traditional TFP. The conceptual reason for im-
plementing the difference is that the Bias objective is to account for the
impact that transformations in the factor’s output elasticities have on pro-
ductivity levels. Since the Solow’s indicator doesn’t consider this effect and
the FRTC is meant to the complete effect of other changes but the bias,
then the difference between the second and the first isolates the problem of
our interest as (AFRTC

i,s,tn
)− (ASolow

i,s,tn
) = (ABias

i,s,tn
).

Interpreting the Biased Technological Change
One of the main contributions of this work lies on a novel interpretation of
the Biased Technological Change. This section will develop the traditional
understanding of this indicator to arrive to the new proposition that links
BTC with Estructural Change.

The concept developed by Antonelli and Quatraro (2010, 2014) is cen-
tered on the relations among factors, output elasticities and productivity. In
this sense, the interpretation is commited to the ratio of capital and labour
over timeand the output elasticity of the factors (which is reduced to one
factor since the complementary relation derived from the CRS). Hence the
focus of the interpretation consist in the K

L t
trend in comparison with the re-

turns derived from β = 1−α, where α stands for the labour output elasticity.

The Biased Technological Change indicator contain it’s strongest ex-
planatory feature within it’s sign. A positive BTC can be interpreted as
a coherent (Antonelli and Quatraro, 2014) relation between the factor’s
ratio and their output elasticities. On the other hand, negative values
represent the opposite: a non-coherent relation between these mentioned
variables. Last, it is worth to mention that a zero-value is an empirical
meta-impossibility but it is exactly the case in which the traditional Solow’s
indicator doesn’t have a bias, meaning that technological change is neutral.
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Figure 1. The Biased Technological Change Interpretation (Traditional).

The nominal amount of the Biased Technological Change indicator doesn’t
lead to any particular assessment, mainly because it is a difference of indexes,
but also due to the fact that the value of the Bias vary over time. This vari-
ation makes difficult to stablish an ex-ante maximum or minimum within
each BTC Cycle and lead to an impossibility to attribute any particular
connotation to a nominal intensity of the Bias. As said, the key aspect to
take into account is it’s sign.

Under this scenario the optimal outcome in terms of efficiency leads to
the use of abundant factors with increasing output elasticities. In fact, under
a pure neoclassic frame, there is no place for a negative bias: both theoret-
ically and empirically a negative bias show a clear inefficient allocation of
resources. The ”right” choice is to allocate the economic activities in factor-
abundant and output-increasing sectors. It’s worth to remind that by doing
this, the period-per-period allocation is increasingly restricted according to
the initial factor endowments allocations1.

1Although this differs from the Ricardian perspective due to the output elasticities ele-
ment, in this point the conditional effect of the initial endownments represent an important
aspect of the bias dynamic.
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The main issue consist in the evidence, that suggest that the negative
bias exist in almost every country of the sample. Whilst theoretically the
negative bias is inefficient and temporary, the empirical data show that is a
regular situation, capable to be found in any economy.

In order the disentangle additional explanatory power from the biased
technological change it is necessary to go beyond it’s dual interpretation
based on efficient vs. non-efficient allocations. When an economy learn and
innovate, or even adapt their productive structure, the process of specializa-
tion is gradual and the results may be seen after a certain period of time.
Each novel specialization process imply inefficiency in the resource alloca-
tions: at an schematic level there is a change from an activity they were
specialized on to a new activity that is new. This is by nature an inefficient
process. Every creation of a new sector suffers this condition, and particu-
larly this may happen if an economy search to re-define their technological
specialization towards sectors that they didn’t dominated. The Biased Tech-
nological Change is an instrument that is able to offer some insights about
these processes.

Figure 2. Biased Technological Change as Structural Change Indicator.

An accentuation of the economic structure derived from the initial en-
dowments may show a positive BTC over time. But if economies change
their specialization in order to become leaders (as in the Schumpeterian
Cycle), then inefficiency takes over.
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A positive BTC imply that the economy is coherent with it’s produc-
tive structure (factors abundance and returns), a negative that it is not.
Although this remain as the main concept of the BTC, the contribution of
this work intend to underline an additional perspective. If the economic
structure is deriving resources to a sector that wasn’t present (enough) in
the economy, then the trend observed by the Bias show a not coherent use
of the resources cause the former specialization is not being accentuated,
but replaced by other activities and productive patterns.

Each time an economy derive resources from traditional activities to
sectors that wasn’t their main source of productivity, the Bias will show
negative values. This doesn’t mean that the economy is necessarily go-
ing in the wrong direction, but that it’s sectoral specialization is changing.
Hence, structural variation towards new specialisation patterns generate in-
efficiency on relative factor allocations, but this inefficiency is not a sign of
wrong choice (a priori2). A negative bias can be interpreted as an indicator
of transition associated to structural change, whilst a positive bias as an
signal of a deep specialization with respect to the previous resources and
their exploitation.

The Bias Technological Change measures coherent allocations with re-
spect to the output elasticities, but by doing that is addressing other pro-
cesses that occur simultaneously such as the structural change. The spe-
cialization around certain productive structures or the structural change
towards new sectors are dynamics that the Bias reflect on the relative allo-
cations measurement through it’s sign.

2In order to evaluate that, there is a need to incorporate some valuation indicator on the
sectors that are gaining participation. One indicator purely based on the technological
aspects could be the patents per sector, but depending on the definition of structural
change, many other indicators may be used. The issue of the evaluation of the technological
change direction will not be addressed on this work.
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3 Data and methodology
Using the mentioned framework, this paper will calculate the amount of Bias
Technological Change over four technological typologies for the 19 sectors
and 16 countries considered in the period 1973-2005. The sources used to
construct the database are several: first, the KLEMS database for the basic
indicators in order to obtain the TFP and Biased Technological Change es-
timations; second the World Development Indicators (WDI) for patents and
other control variables; third, the Groenningen Productivity level database
(GGDC) for relative pricing adjustments considering sectoral level discrimi-
nation (Inklaar and Timmer, 2006) for the Gross Output and, indirectly, the
wages. The result of the integration of these sources is an strongly balanced
panel data with specific information on the countries considered from 1973
to 2006.

Among the 19 manufacturing sectors, 4 groups are built from the OECD
Technological Instensity Classification (ISIC, Rev. 3 - OECD, 2011). Each
sector is classified according to this categories, although due to restrictions
on data availability (mainly before 1990) the matching of each case across
time was partially accomplished. In this sense, the grading of High to Low
tech are merely descriptives, while within the econometric models all the
exercises will be carried using sector level details.

Regarding the country-level comparisons, the TFP dynamics show dif-
ferent behaviour for each broad technological class (see Annexes: Figure 1).
From a global perspective, the TFP levels have been increasing during the
period considered. Particularly, those sectors categorized in higher techno-
logical classes are more productive and show higher growth rates. In con-
cordance with previous literature (e.g. Lipsey and Carlaw, 2004), high-tech
sectors are systematically above in terms of productivity for the majority of
the countries considered.

A complementary tendency can be observed in the averages of output-
elasticities trends (see Annexes: Table 1), as α levels growth as the tech-
nological level increases. This suggest that the techniques alterations over
time impact positively on the technological use of the labour, as the exten-
sive literature on Skill Biased Technological Change propose (e.g. Baller
and Reens, 2013).

The differences among aggregated productivity levels and labour pro-
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ductivity was extensively addressed by the literature in the last decades
(eg. OECD, 2011). There are some economies in which the levels of labour
productivity in a particular technological class is relatively different from
the others, delimiting an specialization patters. This is generally associated
with a type of labour (highly skilled) and a type of predominant sector level
activities (Research and Development intensive).

Regarding the Biased Technological Change, the tendency show that
there is an heterogeneous behaviour over time. Particularly, some countries
(like the Nordic ones) show less variability on their patterns, while others
such as USA, UK, Italy and Germany, show a higher variation (See Table 2
and Figures 2 series on the Annexes).

From a methodological aspect, it is worthy to mention that the Bias
trends shouldn’t necessarily show notorious cycles over time. This, as said
in the previous section, may be linked to the speed in which each econ-
omy is transforming it’s structure and to the direction of that change. For
instance, there are some countries that show negative bias for all the tech-
nological levels considered during an important part of the period (as U.S.).
This particular behaviour can be attributed to the sector-level aggregations
and the sector average calculation process that ”covers” the out-layer cases.
In fact, when one look at the detailed sectoral level, the economies with
recurrent sectoral negative Bias, by definition, have to have a positive bias
in some of their sectors. This is so for machinery and food for the case of
United States. From a theoretical-empirical integration aspect, it is worth
to say that the panel data used was balanced in order to show continuity
of the traditional sectors (existing in the 70’s) for the whole period (1973-
2005). Hence, the newest and more detailed information was ommited in
order to prioritize the long-term trends and a balanced panel for the econo-
metric exercises. As a consequence of this, there is an hypothetical case
(since it doesn’t happens in this sample, although it might happen in other
dataset) in which all the sectors of an economy have negative bias for a long
period: this should be due to the late specialization on new sectors (previ-
ously inexistent) that are not contemplated in the old statistics, generating
an ommited effect of the positive bias.

One of the novelties of this work is to show how the BTC dynamics are
different by sector classes (Annexes: Table 2 series), since this comparison
wasn’t carried out until the exercise that this work is proposing. In terms
of the dynamics across time, each technological class evidence a specific
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trend. Generally speaking, there is a trade-off dynamic among technological
classes in which the countries that have a positive BTC in a given techno-
logical group, tend to show other classes with inverse bias values. As was
mentioned above, this could be due to the effect of specialization patterns,
that can eventually lead to complementarity among sectors but the further
is the technological class, the higher is expectation of an inverse Bias effect
with respect to the specialized sector.
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4 Empirical Strategy and Findings
In order to explore the econometric modelling, a two different alternatives
are explored. The exercise consist in the comparison of an ARMA - Fixed
Effect model and a GMM optimal estimators model to provide consistent
results. Both models are computed to solve endogeneity problems due to the
reverse causality existent among the variables. The strategy adopted was
to lag the set of independent variables and to include the auto-regressive
terms with two lags within the ARMA-Fixed Effects structural equation.
The use of the GMM efficient estimator is a complement that intended to
deal with the dynamically autoregressive, heteroskedastic, Low T, Low N
condition of this calculations. The potential (non-measurable) systematic
clustered heteroskedasticity errors on the data can be also confronted with
this method.

Taking into account the previous modelling within the literature (An-
tonelli and Quattraro, 2010, 2014), the determinants of the Bias comprehend
a group of market related variables, such as the wages and a group of factors
linked to the technological dimension (particularly patents). In addition to
that, two key elements were tested in this work: the existence of path de-
pendence on the factor’s use (specialization) and the inverse effect due to a
meta-substitution effect in terms of sector’s compositions.

Preliminary results suggest that the ARMA-FE model and GMM model
goes in the same direction. Although they are heavily work in progress at
the moment, the first results supports a number of ideas: first, that patents
are not determinants of the BTC, element that seems coherent with the the-
oretical approach, which shows that the “patents-effect” should be present
mainly on the Solow’s technological change determination. Second, that the
path dependence matters. As the specific sector’s and the technological class
of belonging cumulativity are proxies of specialization patterns, preliminary
results show strong positive significant relations in both models. Last, the
sectoral structure is significative on the BTC behavior, while changes in
structure towards a particular activity tends to accentuate the Bias Tech-
nological Change.

In order to explore the econometric modelling, a two different alterna-
tives are explored. The exercise consist in the comparison of an ARMA -
Fixed Effect model and a GMM optimal estimators model to provide consis-
tent results. Both models are computed to solve endogeneity problems due
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to the reverse causality existent among the variables. The strategy adopted
was to lag the set of independent variables and to include the auto-regressive
terms with two lags within the structural equation. The use of the GMM
efficient estimator is also intended to deal with the dynamic autoregressive,
heteroskedastic, Low T, Low N condition of this calculations. The potential
structural error clustered heteroskedasticity on the data can be also con-
fronted with this method.

Taking into account the previous modelling within the literature (An-
tonelli and Quattraro, 2010; 2014), the determinants of the Bias comprehend
a group of market related variables, such as the wages, plus a group of fac-
tors linked to the technological dimension (particularly patents). In addition
to that, two key elements were tested: the existence of path dependence on
the factor’s use (specialization) and the effect on the role of the structural
change in terms of sector’s composition.

Abias = C + β11Abias(i,c,t−1,2,3) + β12A
c
bias(i,s,t−1,2,3) + β21teit−1,2,3+

+β22Tit−1,2,3 + β3wit−1,2,3 + β4Xit + ηt + τi + ϵi,t
(1)

Where C represents the constant, Ait, Ac
it stand for the bias of the cur-

rent sector and technological class for the period t, country i, sector s and
technological class c. Additionally, i refers to tertiary education level, T for
technological level measured in patenting by year t and w for wages, and X
is a vector of control variables at country level . On their part, ηt, τi, ϵi,t
consider the impact of the fixed and time effects and the structural error on
the regression.

The structure of the model is due the strategy implemented to avoid
potential endogeneity issues because of the auto-regressive nature of the
framework. Particularly, this formalization makes use of lagged instrumen-
tal variables focused to avoid causality feedbacks. By doing this, different
time levels restrict the regression from t-1 to t-3.

Particularly for the High Tech technological class,
The results show that consistently for both models the Bias of the high-

tech sectors depend on the previous cumulative experience on that sector
class or, in other words, in the path-dependence effect of each economy. The
higher the experience, the higher is expected to be the Bias. For the partic-
ular case of the High-Tech sectors, we can observe a trade off effect instead
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Table 1: Fixed Effect and GMM models for High Tech Technological Class
Fixed Effects GMM

Tertiary Ed Lag 1 0.398 0.223

(1.22) (1.11)

Patents Lag 1 0.00343 -0.000553

(0.46) (-0.49)

Wage Lag 1 0.0341 -0.0000652**

(1.57) (-3.91)

Lag 2 -0.0594* 0.000120***

(-2.74) (6.14)

Lag 3 0.0235 -0.0000545

(1.14) (-2.04)

BTC High Tech Lag 1 0.793*** 0.891***

(8.00) (11.41)

Lag 2 0.198 0.138

(1.88) (1.22)

Lag 3 -0.161 -0.100

(-1.47) (-0.95)

BTC MidHigh Tech Lag 1 0.134 0.119

(1.22) (0.93)

Lag 2 -0.340* -0.375

(-2.48) (-2.04)

Lag 3 0.120 0.173

(1.66) (1.99)

BTC MidLow Tech Lag 1 -0.271* -0.285**

(-3.04) (-3.34)

Lag 2 0.184 0.272

(1.36) (1.75)

Lag 3 -0.000189 0.0360

(-0.00) (0.34)

BTC Low Tech Lag 1 0.0314 0.131

(0.19) (0.72)

Lag 2 0.113 0.118

(0.53) (0.61)

Lag 3 -0.0117 -0.156

(-0.06) (-1.04)

_cons 0.178* 0.0370

(2.22) (0.70)

of a complementarity with respect to the mid-high technology class. There
is significant relation with respect to the sectors with lower technological
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intensity.

In consonance with the previous results on the literature, the relation
that the bias have with the patenting level is expected to be not-significant.
The reason for this is the the traditional TFP takes over of the knowledge
generation effect, while the Bias is concentrated on how the available re-
sources are used in relation with the productive structure.

Table 2: Fixed Effect and GMM models by technology class
Variable Lag FE high FE mhigh FE mlow FE low gmm high gmm mhigh gmm mlow gmm low

Tert.Educ. L1. +*

Patents L1.

Wages L1. -** -** -**

L2. -* +** +** -** +**

L3. -** -** +* -**

BTC_high L1. +*** +***

L2.

L3.

BTC_medhigh L1. +** +**

L2. -* -*

L3. +**

BTC_medlow L1. -* +*** -* -** +*** -**

L2.

L3.

BTC_low L1. +*** +***

L2.

L3.

_cons +* +* +** +**

Last, the relation that the Bias present with factor prices tends to be
significant, although it doesn’t show a clear direction. This could be due to
the dynamic that wages have on productivity, as it is known that often lower
wages not necessarily imply a restriction on the use of the available resources,
but the contrary (specially in the application of liberal measures, and only
observing the short term). This results point in the same direction than
the previous works on the subject (Antonelli and Quatraro, 2014) meaning
that the role that relative factor prices relations have on the technological
specialization patterns is particularly relevant. The lesser the wages, the
higher is expected to be the bias for a particular technological class. This is
so in the High-tech sector only, while in the others the sign of the relation
depends on the lag one consider.
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5 Conclusions
The main subject of interest of this work is to complement the TFP studies
by making use of additional information that can be derived from the avail-
able data. In order to do so, the concept of Biased Technological Change
acquire particular relevance.

The BTC trends are different by sector, country and time. For the pe-
riod analysed the trends of BTC differ according to each economy’s history
and structure. This can be attributed to the different specialization patters
and prices relations of the factors.

The interpretation of the Biased Technological Change goes beyond a
dual evaluation related to the coherence. In addition to that interpretation,
it can also be useful to understand sectoral specialization patterns. In this
sense, because of the learning process associated with the use of new tech-
nologies, a negative bias imply a modification on the specialization trend,
which carry a non-coherent use of the resources available in the economic
structure. Each time a new specialization take place, is unavoidably unn-
eficient. On the other hand, a positive bias imply a profundization of the
specialization pattern that the economy had in the past, responding to the
same group of productive activities.

Regarding the determinants of the bias, the results are consistent with
previous works. On the one hand, the determinants are different from those
which explain the traditional TFP dynamics, in particular regarding the
role of patents, which in general doesn’t show a significant relation (or even
a negative one). This is due to the bias nature, that is based on resource
allocation instead of science and technology activities. On the other hand,
the results show the importance of the path dependence effect for the Bias,
with a systematic role of the previous periods of BTC on the present one,
even in different technological classes.

Due to the sector-level detail explored in the dataset used, this work
address the specialization meta trade-off that takes place when the Bias is
negative in one sector. In these cases, at a theoretical level, if a sector show
a negative bias, at least other sector should exhibit a positive one. Or in
other words, the BTC allow to see how the sectors compete with each other
at the moment of resource allocations.

To conclude, it is important to mention that the theoretical develop-
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ments regarding the Bias and it’s implications are able to be measured and
tested. This process can be carried out without any new data collection
process, meaning that the currently available data is useful to calculate the
BTC at different aggregation levels.

Last, the implications on the interpretation that one can make from the
available data entail important consequences if one consider the effect of the
Biased Technological Change, such as a deeper understanding of catching up
processes and specialization patterns. Further developments to understand
the BTC dynamics under a framework of Multi-Factor Productivity entail a
theoretical, analytical and empirical challenge worthy to be faced in future
works.

18



6 Bibliography
Ark, B. van, O’Mahony, M. and Timmer, M.P. (2008), “The productivity gap between
Europe and the U.S.: Trends and causes”, Journal of Economic Perspectives, vol. 22(1),
pp. 25–44

Acemoglu D., 1998. ”Why Do New Technologies Complement Skills? Directed Tech-
nical Change And Wage Inequality,” The Quarterly Journal of Economics, MIT Press,
vol. 113(4), pages 1055-1089, November.

Acemoglu D., 2000. ”Labor- and Capital- Augmenting Technical Change,” NBER
Working Papers 7544, National Bureau of Economic Research, Inc.

Acemoglu D., Johnson and Robinson (2004), ”Institutions as the Fundamental Cause
of Long-Run Growth,” Handbook of Economic Growth

Acemoglu D., 2010. ”When Does Labor Scarcity Encourage Innovation?,” Journal of
Political Economy, University of Chicago Press, vol. 118(6), pages 1037 - 1078.

Antonelli, Cristiano (1997). “Percolation processes, technological externalities and
the evolution of technological clubs”, Empirica, Vol. 24, num. 1-2, January

Antonelli, Cristiano. (2007) “The system dynamics of collective knowledge: From
gradualism and saltationism to punctuated change”, Journal of Economic Behavior &
Organization, Vol. 62 215–236, 2007.

Antonelli, C. (2007). Technological knowledge as an essential facility. Journal of
Evolutionary Economics, Vol.17, Nº 4, Agosto de 2007.

Antonelli, Cristiano (2011). Handbook on the economic complexity of technological
change. Edward Elgar, Chetenham.

Antonelli Cristiano, 2013. The economics of technological congruence. Department
of Economics and Statistics Cognetti de Martiis. Working Papers 201306, University of
Turin.

Antonelli C., Quatraro, F. 2014. The effects of Biased Technological Changes on
Total Factor Productivity: A Rejoinder and New Empirical Evidence. GREDEG Working
Paper. University of Nice Sophia Antipolis.

Balleer and Reens (2013). Skill-Biased Technological Change and the Business Cycle.
The Review of Economics and Statistics, MIT Press, vol. 95(4).

Bartelsman, E. J., Haltiwanger, J., & Scarpetta, S. (2008). Cross Country Differ-
ences in Productivity: The Role of Allocative Efficiency. Cambridge (MA), U.S., NBER
(National Bureau of Economic Review)

Boskin, M., & Lau, L. (2000). Generalized Solow-Neutral Technical Change and
Postwar Economic Growth. Cambridge (MA), U.S.

Crepón, B., Duguet, E., & Mairesse, J. (1998). Research, Innovation, and Productiv-
ity: an econometric analysis at the firm level. Cambridge (MA), U.S., NBER (National
Bureau of Economic Review)

Dasgupta, P., & Stiglitz, J. (1978). Uncertainty, industrial structure, and the speed
of R&D. Cambridge (MA), U.S., NBER (National Bureau of Economic Review)

Duguet, E. (2003). Innovation height, spillovers and TFP growth at the firm level:
Evidence from French Manufacturing. Economics of Innovation and New Technology,
13(1-2), 106–112.

Feder, Christoph, 2014. ”Biased Technological Change: A contribution to the debate,”
Department of Economics and Statistics Cognetti de Martiis. Working Papers 201404,
University of Turin.

Fisher, Franklin M and Solow, Robert M and Kearl, James M, 1977. ”Aggregate
Production Functions: Some CES Experiments,” Review of Economic Studies, Wiley

19



Blackwell, vol. 44(2), pages 305-20, June.
Griliches, Z. (1979), Issues in assessing the contribution of research and development

to productivity growth, Bell Journal of Economics, 10, 92–116.
Griliches, Z. (1991). The Search for R&D Spillovers. Cambridge (MA), U.S. NBER
Hall, Robert and Jones, Charles (1999), “Why Do Some Countries Produce So Much

More Output perWorker than Others?,”Quarterly Journal of Economics, 83-116.
Hall, B. H., Griliches, Z., & Hausman, J. A. (1983). PATENTS AND R&D: SEARCH-

ING A LAG STRUCTURE. Cambridge (MA), U.S., NBER (National Bureau of Economic
Review)

Krugman, P. (1990). INCREASING RETURNS AND ECONOMIC GEOGRAPHY.
Cambridge (MA), U.S.

Lipsey and Carlaw, (2004). Total Factor Productivity and the Measurement of Tech-
nological Change. The Canadian Journal of Economics / Revue canadienne d’Economique
Vol. 37, No. 4 (Nov., 2004), pp. 1118-1150 Published by: Wiley. Article Stable URL:
http://www.jstor.org/stable/3696125.

Martin L. Weitzman, 1998. ”Recombinant Growth,” The Quarterly Journal of Eco-
nomics, MIT Press, vol. 113(2), pages 331-360, May.

Mas, Matilde and Javier Quesada (2005), ICT and Economic Growth in Spain 1985-
2002

Mas, Matilde, Carlo Milana and Lorenzo Serrano (2008) Spain and Italy: Catching
up and falling behind. Two different tales of productivity slowdown

Perez, C. (1986).”The new technologies: An integrated view” Jul, 1986
Perez, C. (1983). ”Structural Change and Assimilation of New Technologies in The

Economic and Social Systems” Oct, 1983
Perez, C. (2009).Technological revolutions and techno-economic paradigms Jan, 2009
Quah, Danny, 1993. ”Empirical cross-section dynamics in economic growth,” Euro-

pean Economic Review, Elsevier, vol. 37(2-3), pages 426-434, April.
Raval, D. (2011). BEYOND COBB-DOUGLAS: ESTIMATION OF A CES PRO-

DUCTION FUNCTION WITH FACTOR AUGMENTING TECHNOLOGY. Cambridge
(MA), U.S., NBER (National Bureau of Economic Review)

Robert, V., Pereira, M., Kataishi, R., & Yoguel, G. (2008). The effects of feedbacks on
firms’ productivity growth. Micro, macro, and meso determinants of productivity growth
in Argentinian firms.

Solow, R. (1957). Technical Change and the Aggregate Production Function. The
Review of Economics and Statistics, 39(3), 312–320.

Solow, R. 1979. ”Alternative Approaches to Macroeconomic Theory: A Partial View,”
Canadian Journal of Economics, Canadian Economics Association, vol. 12(3), pages 339-
54, August.

Solow, Robert M., 1987. ”Growth Theory and After,” Nobel Prize in Economics
documents 1987-1, Nobel Prize Committee.

Timmer, Marcel, Mary O’Mahony and Bart van Ark (2007), The EU KLEMS Growth
and Productivity Accounts: An Overview, March 2007

20



7 Annexes
Table: BTC values at country level for 2005

BTC for High Tech Sectors BTC for Mid-High Tech Sectors BTC for Mid-Low Tech Sectors BTC for Low Tech Sectors

Finland 0,2588431 Australia 0,1032339 Finland 0,0852395 Finland 0,0815533

Australia 0,1208218 Denmark 0,0429426 United Kingdom 0,0611306 United Kingdom 0,0289376

Denmark 0,0555285 Netherlands 0,0162143 Netherlands 0,0248647 Spain 0,0238482

United Kingdom 0,0274878 France 0,0136268 Australia 0,0239456 Australia 0,0232899

Japan 0,0263787 Japan 0,0057055 Spain 0,0232379 Japan 0,0214199

Germany 0,0171946 Italy 0,001846 Belgium 0,017621 Korea 0,010029

France 0,0152616 Korea 0,0016354 Japan 0,0149806 Belgium 0,0078278

Korea 0,0014341 Germany 0,0015709 France 0,0134472 Netherlands 0,0065911

Spain -0,0023444 Finland -0,0005584 Korea 0,0087859 France -0,0126639

Belgium -0,0158158 Belgium -0,0022822 Germany -0,0114972 Denmark -0,0130407

Italy -0,02715 Spain -0,0173432 Denmark -0,0131516 Germany -0,027937

Netherlands -0,0856211 United Kingdom -0,0609391 Italy -0,026381 Italy -0,0570867

United States -0,1142452 United States -0,0671418 United States -0,185166 United States -0,1357625

Table 3: General Description by sector’s technolgical level and country
Country ASolow

High ASolow
low αhigh αlow AV

Australia 1.029095 (0.04) 1.019783 (0.02) .7611892 (0.10) .6679908 (0.07) 87.82 (24.00)

Austria 1.013285 (0.02) 1.012029 (0.01) .7774077 (0.08) .6986536 (0.08) 91.49 (19.03)

Belgium 1.014507 (0.02) 1.016044 (0.01) .7416166 (0.03) .6378198 (0.02) 92.47 (14.39)

Denmark 1.013601 (0.02) 1.012157 (0.01) .7777828 (0.08) .7079545 (0.02) 97.27 (10.67)

Spain 1.04974 (0.07) 1.036309 (0.04) .6653023 (0.06) .5728817 (0.04) 92.04 (22.01)

Finland 1.031736 (0.04) 1.03165 (0.04) .5972933 (0.14) .6095666 (0.06) 95.99 (25.83)

France 1.014495 (0.03) 1.018418 (0.02) .7111405 (0.04) .6229139 (0.03) 92.66 (17.97)

Germany 1.008527 (0.03) 1.010413 (0.01) .7467293 (0.05) .6729525 (0.02) 115.8 (10.52)

Ireland 1.043263 (0.14) 1.014259 (0.07) .4697167 (0.09) .439921 (0.07) 90.31 (43.74)

Italy 1.034093 (0.06) 1.034524 (0.05) .6195079 (0.04) .5551646 (0.05) 85.91 (17.85)

Japan 1.000274 (0.02) 1.000542 (0.01) .577064 (0.04) .4961445 (0.03) 88.61 (16.81)

Korea 1.009833 (0.02) 1.008553 (0.01) .4938315 (0.07) .5506201 (0.06) 71.07 (46.78)

Netherlands 1.014194 (0.04) 1.013777 (0.01) .9011989 (0.10) .6323223 (0.03) 90.12 (20.70)

UK 1.030718 (0.05) 1.031191 (0.04) .6866772 (0.05) .6770142 (0.03) 91.94 (15.76)

United States 1.015779 (0.02) 1.017056 (0.02) .6525807 (0.01) .5922616 (0.06) 89.18 (24.95)
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Figure 1. TFP trend by country and technological class.
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Figure 2.a. BTC trend by country for High-Tech technological class.

Figure 2.b. BTC trend by country for Mid-High-Tech technological class.
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Figure 2.c. BTC trend by country for Mid-Low-Tech technological class.

Figure 2.d. BTC trend by country for Low-Tech technological class.
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