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Abstract

This paper estimates the determinants of the spatial distributions of firms across a variety

of sectors in the United States. Estimation is based on a model of endogenous localization

choices characterized by a unique stochastic equilibrium. Firms maximize utility as af-

fected by regional fundamentals, localization externalities, and idiosyncratic preferences.

Standard procedures of model selection help to severely discriminate among alternative

nested models according, in particular, to their account of externalities. These turn out

being present across all sectors. Moreover, their attractive pull tends to be stronger than

any other determinant of firm localization.

JEL codes: L1, C31, R3.

Keywords: Firm location, Heterogeneity, Localization externalities, Nested models, Model

selection.

1 Introduction

This paper analyzes the determinants of the spatial distributions of firms in the United States

through a model of endogenous localization choices and its corresponding estimation method.

Both theoretical and empirical aspects contribute to characterizing the analysis that follows.
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In the model, firms choose where to settle according to three types of determinants: their

idiosyncratic preferences, a common set of exogenous regional features, and localization exter-

nalities. Being characterized as a random variable, idiosyncratic preferences bring stochastic-

ity into the system and thus lead to identify a stochastic spatial equilibrium. According to

this notion, a spatial equilibrium is attained when the net flows of firms across regions are

null. Essentially, this corresponds to identifying a detailed balance condition, thus predicting

a distribution of firms across regions. In fact, the dynamical system embedded in the model

converges toward a unique ergodic distribution, which is the stochastic equilibrium. Notably, a

closed form solution of such distribution is derived for any number of firms and regions, so that

the predicted equilibrium can be actually compared with the observed spatial distributions of

firms.

Hence, the model is estimated at the level of commuting zones for a variety of manufactur-

ing and service sectors in the United States. This estimation exercise is carried out ensuring

that localization externalities are severely tested for and disentangled from other effects. In

particular, standard techniques of model selection inform the choice between alternative nested

models that differ exclusively for the externality parameter. As it turns out, even after penal-

izing parametric numerosity, the incorporation of externalities allows to explain systematically

more of the observed spatial distributions of firms. Furthermore, the marginal elasticity of

localization externalities on the probability for a region to attract extra firms is found to be

the main determinant of the spatial distributions of firms across most sectors.

This work is related to a number of contributions in the literature. The baseline theoretical

model presented here was originally formulated by Bottazzi and Secchi (2007) as a Markovian

version of the urn process introduced by Arthur (1990), with the intention to allow for empirical

testing in models with social interactions. The typical identification problems associated to

this type of models shape the discussion in Blume et al. (2011), to which the present work

actively contributes. Within this broader analytical context, specific attention is devoted to

disentangling and measuring the determinants of firm localization, thus linking with a plentiful

of studies sharing a similar goal (see Beaudry and Schiffauerova (2009), Head and Mayer (2004),

Puga (2010), Rosenthal and Strange (2004) for complementary surveys). Yet, three aspects

distinguish this contribution from related studies in applied economic geography. First, the

final outcome of the present approach does not consist solely in estimating parameters, but

also in predicting the entire spatial distribution of firms in each sector. This represents a

major difference from the works of Black and Henderson (1999), Desmet and Fafchamps (2006),

Devereux et al. (2004), Dumais et al. (2002), Ellison and Glaeser (1997, 1999), Henderson

(2003), Maurel and Sédillot (1999), Rosenthal and Strange (2001). Second, and differently from

Duranton and Overman (2005), the effect of externalities are disentangled from the effect of

region-specific factors deriving, for instance, from natural or infrastructural advantages. Third,

substantial improvements are introduced in the estimation method as compared to related

studies by Bottazzi et al. (2007, 2008), in particular by applying maximum likelihood to obtain

point estimates and bootstrap resampling to estimate their variance. A similar exercise has

already been carried out by Bottazzi and Gragnolati (2012) for Italy, but at a coarser sectoral

disaggregation.
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The remainder of the paper will be organized as follows. Section 2 presents and discusses

the model of firm localization on which the subsequent econometric analysis is based. Section 3

describes the estimation method. Section 4 briefly presents the dataset used to carry out the

analysis. Section 5 shows the results of the estimation procedure. Finally, Section 6 summarizes

the contributions of this paper and sketches possible future developments.

2 A model of endogenous localization choices

Consider a sector with a fixed number of firms N that chose where to locate among L regions.

The following model aims at characterizing the occupancy vector of firms across regions, n =

(n1, . . . , nL), where nl is the number of firms located in l.1 At each time step, a firm is selected

at random to revise its locational choice according to its preferences. This dynamic could

represent both the exit of an incumbent and the entry of a new firm with different preferences,

or an exogenous shock to the preferences of an active firm. In any case, the occupancy vector

n is revised according to utility maximization on the side of the randomly drawn firm.

The utility ui,l(φ,a,n) that firm i derives from locating in region l is assumed to depend

on three terms. First, the idiosyncratic component φ = (φi,1, . . . , φi,L), which is the realization

of a random process. Second, the intrinsic attractiveness a = (a1, . . . , aL) given by exogenous

regional features. Third, the occupancy vector n, which establishes an interdependence between

the firm that is choosing and the locational choices made by other firms. In this sense, the

present model includes a localized externality. Generally, φ, a and n enter ui,l as vectors

since firms can evaluate l as well as its l − k spatial neighbors, thus giving rise to spatial

interdependence. However, this aspect of generality will be sacrificed in the following treatment

by assuming that k = 0, thus abstracting from spatial interdependence. As a consequence, the

utility of a generic firm simplifies to the form ui,l(φi,l, al, nl).

Provided with a vector of utilities ui = (ui,1, . . . , ui,L), the randomly drawn firm chooses to

locate in the region l̃i such that

l̃i = argmax
l∈1,...,L

{ui,l(φi,l, al, nl)} .

If the region l̃i is different from the previously occupied by firm i, this choice generates a

modification of the occupancy vector n. As discussed below, the dynamics entailed by this

model imply notionally different types of equilibrium depending on φ being or not degenerate.

When φ is degenerate, the model is entirely deterministic, thus resounding with the vast liter-

ature relying on the assumption of a representative agent. When φ is non-degenerate, instead,

firm heterogeneity brings stochasticity into the model and leads to identify a different type of

equilibrium.

1Clearly, the number of firms in a sector is not generally constant in reality. However, the variation in the
number of active firms is typically an order of magnitude smaller than the gross number of entries and exits
(see Bartelsman et al., 2005). Therefore, the spatial distribution of firms can be safely assumed to be driven by
relocations, rather than by genuine entry.
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(a) (b)

Figure 1: Equilibria in a two-location deterministic model

2.1 Equilibrium notion

To understand the notion of stochastic equilibrium inherent to the present model, it useful to

illustrate first how the equilibrium would be defined in some simplified deterministic examples.

In the simplest case, φ is degenerate and externalities are null. Therefore, the vector of

utilities u = (u1(a1), . . . , uL(aL)) is constant for all firms. The only long-run equilibrium in

this baseline case consists in having all firms located in the same region, in which a will be

maximum. Things get more complex as soon as externalities are added while neglecting the

term al, so that u = (u1(n1), . . . , uL(nL)). For an equilibrium to be reached in this case, the

firm that is called to make a choice must select the same region that is already occupying, as no

stochastic shock to preferences enters u. This condition is met only if none of the alternative

regions have a utility higher than the utility of the current region. Therefore, those regions

whose utility at equilibrium is strictly lower than the utility of some other region will be empty.

At the same time, all non-empty regions should have the same utility. Formally, n∗ is an

equilibrium occupancy if and only if there exists a constant c such that for any l
ul(n

∗) = c if 0 < n∗l < N ,

ul(n
∗) ≤ c if n∗l = 0 ,

ul(n
∗) ≥ c if n∗l = N

Notice that, if there exists a region l for which n∗l = N , then for any other region m 6= l it will

be n∗m = 0. In this occurrence of full agglomeration, the previous statement simply means that

the utility of the region in which firms agglomerate, ul(n
∗
l ), is higher than the utility of any

other region, um(n∗m). This equilibrium is locally stable if there exists ε > 0 such that for any

initial condition n′ abiding to ||n′ − n∗|| < ε, the system will converge to n∗. In general, the

existence, stability and number of deterministic equilibria depend on the set of functions u(n),

as exemplified in Figure 1 for the case L = 2.

For instance, the utility of locating in a given region could decreases with the number of
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firms already placed there. This shape of ul could derive from several mechanism, such as

the progressive reduction of output price resulting from increased of local competition, or the

progressive increase in production cost due to the exhaustion of the local labor pool. Whichever

the reason, the difference of utilities u1−u2 could then follow a behavior as in Figure 1a, where

xi is the fraction of firms located in region i. As long as x1 < 1/2, then only a firm located in

region 2 would migrate, thus increasing x1. Conversely, as long as x1 > 1/2, only firms located

in region 1 would migrate, and thus decrease x1. Hence, the only stable equilibrium is when

firms are symmetrically distributed across the two regions, that is x = 1/2.

Alternatively, the utility of locating in a given region increases with the number of firms

already placed there. This could happen, for instance, because of an increase in demand

when consumers prize diversity, or for the existence of localized technological spillovers which

increase productivity. Whichever the reason, the difference of utilities u1−u2 could then follow

a behavior as in Figure 1b. Now the only stable equilibria are represented by fully agglomerated

economies, with all firms concentrated either in region 1 or in region 2, whereas the symmetric

equilibrium x = 1/2 is unstable.

The analysis of these kinds of deterministic equilibria has produced a vast theoretical lit-

erature, typically sharing the assumption of a representative agent (see Bottazzi and Dindo,

2013, Forslid and Ottaviano, 2003, Krugman, 1991, Venables, 1996, among others). The present

model resounds with that literature in considering the case for positive externalities. At the

same time, however, it also moves away from that approach by describing firms as heteroge-

neous, thus assuming that the process φ is non-degenerate. Moreover, here regions are generally

considered to be asymmetric in their exogenous features, as captured by the term al.

Once preference heterogeneity is allowed for through a non-degenerate φ, the characteriza-

tion of equilibrium changes. Generally, the new entrant never replaces the exiting firm in the

same region, because the two normally hold different preferences. But order can still emerge

in probability. If for any regions m and l, the incentives for a firm to move from m to l are

exactly counterbalanced by the incentives for another firm to move from l to m, then the av-

erage number of firms in each region converges to a fixed point. In turn, this defines a spatial

distribution π(n;a, b), which constitutes the stochastic equilibrium of the present model.

The formal derivation of such equilibrium relies on the fact that choices are not driven by

the stochastic component in probability. In fact, the probability pl for location l to be selected

by the randomly drawn agent is given by

pl = Prob{cl + φl ≥ cj + φj ∀j 6= l | c, F (φ)} ,

where cl(al, nl). Following either Yellott (1977, Th.6 §4) and Luce (1959, Axiom 2.1) or

Raouf Jaibi and ten Raa (1997), such probability can be proved to be

pl =
cl∑L
j=1 cj

, (1)

provided that the upper tail of F (φ) decays faster than in an exponential distribution (see

Bottazzi and Secchi, 2007, Propositions 2.1 and 2.2). Exploiting the fact that pl depends solely
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on the common term cl and not on the stochastic one, it is then possible to assess the dynamical

system entailed by the model.

Such system does not keep track of the position of each single firm over time. More simply,

the state of the system is the occupancy vector n = (n1, . . . , nL), while the number of possible

configurations corresponds to the number of ways in which N firms can be distributed in L

regions. Hence, the number of possible configurations is
(
N+L−1

N

)
. This system is equivalent to

a finite Markov chain with transition probability defined by

P (n′ | n) =


nl

N

ql′ (n−δl)∑L
m=1 qm(n−δl)

if n′ = n− δl + δl′

0 otherwise

where δl is the vector of length L with the l-th entry equal to 1 and all other entries equal

to zero and ql = exp (ul) (see Bottazzi and Secchi, 2007, Propositions 3.2). The stochastic

equilibrium of this dynamical system will then correspond to the detailed balance condition

Pr {n+ δl − δm|n} πn = Pr {n|n+ δl − δm} πn+δl−δm , (2)

where δi is a L × 1 vector with value 1 in the ith element and 0 otherwise. As a remark,

equation (2) expresses a notion of “collective equilibrium” in the sense that it guarantees the

stationarity of π(n) in the aggregate, while individual turbulence might take place.

2.2 Preference structure and closed form solution

The dynamics of the system generated through entry and exit depend on the structure of

ul(al, nl, φl). In particular, a linear form will be assumed here:

ui,l = al + bnl + φi,l b ≥ 0 , (3)

where cl = al + bnl. Given this preference structure, the dynamical system can be proved to

converge to a unique stationary distribution π(n;a, b) that is not affected by initial conditions.

Therefore, the system is ergodic (see Bottazzi and Secchi, 2007, Proposition 3.4 and Appendix

A.3.). Clearly, π(n;a, b) reveals how many regions host n = (0, 1, ..., N) firms for given values

of a = (a1, ..., aL) and b.

In general, π(n;a, b) is characterized by the Polya form

π(n;a, b) =
N !Γ(A/b)

Γ(A/b+N)

L∏
l=1

1

nl!

Γ(al/b+ nl)

Γ(al/b)
, (4)

where A =
∑

l al. In the specific case of null externalities, however, equation (4) reduces to a

multinomial form:

π(n;a, b = 0) = N !
L∏
l=1

1

nl!

(al
A

)nl

. (5)

In the following exposition, equations (4) and (5) will be referred to as the “Polya model” and
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(a) (b)

Figure 2: Spatial distributions of plants across US commuting zones in two exemplifying sectors.

the “Multinomial model”. But they actually constitute the varying prediction of a single model

of firm localization for varying values of b. In this sense, the Polya and Multinomial models are

nested and their performances can be compared with standard procedures of model selection

(see Section 3.2).

The estimation of the model will take place under the assumption that the observed spa-

tial distribution of firms is an equilibrium. It is easy to find empirical support to back this

assumption. As an example, Figure 2 overlays the spatial distributions of two representative

sectors in 1998 and 2010. The impression of stationarity that one has from visual inspection of

Figure 2 is indeed confirmed by Kolmogorov-Smirnov tests. Across all sectors, the hypothesis

of a null difference between spatial distributions is never rejected when comparing 1998 with

2010. Therefore, assuming that the observed spatial distributions are an equilibrium is gener-

ally unproblematic at the empirical level. In parallel, the model is designed so that each time

step corresponds to a localization choice rather than to an actual time unit. Consequently,

convergence to the equilibrium distribution occurs after a sufficient number of choices have

taken place, and this might well correspond to a relatively short real time.

3 Estimation

Given a set of H region-specific variables xl = (x1l , ..., x
H
l ), these can serve to define the attrac-

tiveness or a region via the generic function g(β,xl), where β are unknown parameters to be

estimated. More precisely, equations (4) and (5), yield the following log-likelihood functions

for the Polya and Multinomial model respectively:

log π = logN !−
∑
l

log nl! +
L∑
l=1

nl−1∑
k=0

log(g(β,xl) + k)−
N−1∑
k=0

log(G+ k) , (6)

log π = logN !−
L∑
l=1

log(nl!) +
L∑
l=1

nl (log g(β,xl)− logA) , (7)
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where g(β,xl) = al/b in (6) and g(β,xl) = al in (7), while G =
∑L

l=1 gl. Maximizing (6)

and (7) yields the maximum likelihood point estimates β̂ for each of the two models. These

estimates can then be used to quantify the marginal effects of localization externalities on pl

while controlling for the effect of region-specific variables.

In doing so, pl is actually substituted with its monotone transformation ql = − log(1− pl),
so as to obtain an unbounded measure. According to (1), in the context of the Polya model, the

marginal effects associated respectively to region-specific factors and to localization externalities

are

∂q

∂ log xh
=

L∑
l=1

∂ql
∂ log xhl

=
L∑
l=1

xhl ∂hgl
N +G

, (8)

∂q

∂ log n
=

L∑
l=1

∂ql
∂ log nl

=
L

N +G
. (9)

On the other hand, in the context of the Multinomial model, the only type of marginal effect

is given by

∂q

∂ log xh
=

L∑
l=1

∂ql
∂ log xhl

=
L∑
l=1

xhl ∂hcl
G

, (10)

as localization externalities are ruled out by definition (i.e. b = 0).

While ∂q/∂n in (9) does not depend on the specification of g(), the computation of ∂q/∂xh

in (8) and (10) needs such function to be specified. Here a log-linear specification is adopted

which reads

g(β,xl) = exp

(∑
h

βh log(xh,l) + β0

)
(11)

=
∏
h

xβhh,l exp(β0) .

Indeed, (11) is equivalent to the standard Cobb-Douglas functional form, so that gl can be

seen as the accumulated multiplicative effect of the different variables. As such, it has a

probabilistic interpretation: if, on average, the probability to choose region l according to

factor h is proportional to xβhh,l, and if the effects of the different factors can be assumed as

roughly independent, the combined probability of the firm to choose this region is given by

expression (11).2 The H variables taken in consideration are listed in Table 2. Note that all

controls are inputed into equation (11) as z-scores, so that the resulting estimates are fully

comparable.

Given specification (11), it is especially convenient to obtain the corresponding marginal

2In the multinomial case, it is assumed that β0 = 0 in (11). In fact, in that case, the log-likelihood (7) is
invariant for a rescaling factor, i.e. the transformation al → λal applied to each al leaves the likelihood level
invariant. Consequently, leaving β0 to be estimated would result in an over-specified model.
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Figure 3: Monte Carlo analysis of coefficient bias.

elasticities

∂q

∂ log xh
=β̂h

G

N +G
, (12)

∂q

∂ log xh
=β̂h , (13)

for the Polya and Multinomial model respectively. Indeed, the estimates β̂ needed to compute

(12) and (13) come precisely from their maximum likelihood estimation in (6) and (7).

The variance of these estimates is computed through bootstrap resampling, thus allowing to

assess their statistical significance. Also, Figure 3 shows the results of Monte Carlo analysis on

the bias of the estimated coefficients for varying values of N and L. The asymptotic consistency

generally ensured by maximum likelihood estimation is reached in practice for any L > 100,

even when regressors are strongly collinear. This condition is always respected in the present

analysis, as estimation occurs on a dataset composed by 691 regions that cover the entire

mainland United States. Therefore, the estimates do not suffer of small sample problems.

Finally, it is worth emphasizing that the present approach is immune to endogeneity prob-

lems. As long as the underlying variables of the model are actually in equilibrium, the present

method reveals how much each variable contributes to the probability for a location to host

a certain number of firms. In fact, any possible co-evolution in time of the variables ceases

once equilibrium is reached. As mentioned before and further discussed below, this condition

is actually met in the data (see Figure 2 and Figure 4).

3.1 Controls

The set of H controls taken in consideration here aims at ensuring that only sector-specific

localization externalities are measured through equation (9), while washing away correlated ef-

fects. In this sense, the controls listed in Table 2 are meant to capture the other classical drivers

of firm localization, namely urbanization economies, natural or infrastructural advantages, and
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the attractive pull of vertically-related sectors.3

Urbanization economies are controlled for by a mix of variables highlighting the different

sources of attractiveness for cities. First, the population of each commuting zone together with

its median income level captures the pull of local demand. Second, adding to the equation

also the area of each commuting zone serves to control for population density, and thus for the

level of generic local labor supply. Third, a measure of local infrastructural endowment takes

in consideration the cost-sharing advantages that typically characterize cities with respect to

infrastructures (see below for more details on the measurement). Fourth, the Shannon’s variety

index has been inserted in trial regressions, following Jacobs (1969) on the idea that cities

might offer greater inter-sectoral spillovers due to their greater industrial variety.4 However,

this variable has turned out being either statistically or economically non significant for most

sectors, and thus it was dropped. One could perhaps presume that also other effects contribute

to urbanization economies. If this were the case, a binary variable for metropolitan and/or

micropolitan areas should be associated, at least, to a statistically significant coefficient. This,

however, never happens in the sectors under scrutiny. Hence, urbanization economies are

already largely captured by the set of controls in Table 2.

Another subgroup of controls aims at capturing natural and infrastructural advantages.

On the one hand, the number of mines, as well as the intensity of cropland, forests, rivers

and coasts are meant to proxy natural advantages. On the other hand, each commuting zone

is also characterized in terms of its endowment of transport infrastructures. In fact, while

partly shaping urbanization economies as described above, transport infrastructures are more

generally a strategic assets for trade as they affect transport costs. The local endowment of

transport infrastructures is measured as the average distance of the centroid of each commuting

zone from the nearest airport, seaport, intermodal facility, highway, state route, and freight

railroad. Notably, some alternative regressions have been run considering the distance from

each single type of infrastructure, rather than their average.5 However, the various distances

from the different types of infrastructures turn out being rarely significant, both statistically

and economically, while some significance is gained by considering their average. This suggests

that firms are solving a problem of joint transport cost minimization, possibly because they

rely on multiple types of transport infrastructures across virtually all sectors.

An unbiased estimate of sector-specific localization externalities requires also to control

for inter -sectoral spatial relations. As discussed by Marshall (1890) and Venables (1996),

localization choices within a certain sector might be correlated with those of another sector due

3For a summary of the different drivers of firm localization considered in the literature, see Beaudry and
Schiffauerova (2009), Head and Mayer (2004), Puga (2010), Rosenthal and Strange (2004).

4The Shannon variety index for each region is computed as Sl =
∑

i sl,i log (1/sl,i), where sl,i is the share of
the i-th sector in region l.

5Also, other trials regressions have been attempted. In particular, the distance from seaports was dropped
due to its dependence on the presence of maritime coasts, which enter in another control. However, this variation
does not affect the results. Similarly, the infrastructural endowments have been measured also in alternative
ways. In particular, instead of considering the distance of the region from the relevant infrastructures, an
alternative measure consists in counting the number of kilometers of highways, state routes, railways, as well
as the number of airports, seaports and intermodal facilities in each region. In general, statistical significance
diminishes with these alternative measures, thus indicating that the one finally adopted here is more accurate
in detecting the relevant effects.
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(a) (b)

Figure 4: Spatial distribution of population across US commuting zones.

to self-reinforcing mechanisms acting across sectors. Inserting as a control the local share of

vertically related sectors is meant to wash away from the estimate of sector-specific externalities

the effect inter -sectoral dependencies. This control is computed by giving more weight to the

sectors that are more strongly related to the one under scrutiny according to input-output

tables. Given an input-output matrix M , label with mi,j its element expressing the value of the

generic input-output relation between sector i and j. For sector i, the weight of such relation

is given by wi,j = mi,j/
∑

jmi,j, where wi,j = 0 if i = j. Labeling as sj,l the share of sector

j 6= i in region l, the weighted local share of sectors that are vertically integrated with i is

given by vi,l =
∑

j sj,lwi,j ∀i 6= j. Hence, the variable vi,l changes across sectors due to their

different input-output relations. Table 2 reports the cross-sectoral arithmetic average of this

variable. Notice that, in principle, weights can be assigned according to either downstream

or upstream relationships among sectors. In practice, however, the values of vi,l that result

from these alternative weighting procedures display a correlation amounting to r = 0.998

(p-value = 0.001). Therefore, in the present context, either one of them will be referred to in

terms of generic vertical integration.

As a remark, it is worth emphasizing that the spatial distributions of these controls display

the same type of stability over time that is displayed by the spatial distributions of firms. In

particular, Figure 4 shows the spatial distribution of population across the commuting zones

of the United States in year 1998 and 2010. This control is particularly relevant since it will

turn out being orders of magnitudes more explicative than any other control (see Section 5).

In fact, the Kolmogorov-Smirnov test reveals no statistically significant variation over time has

occurred in the spatial distribution of population (p-value = 0.240). This evidence provides

further support to the idea that we are actually observing a spatial equilibrium, thus meeting

the necessary condition for a sensible application of the present approach.
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3.2 Model selection and goodness of fit

As already mentioned, the methodology presented here allows to evaluate directly the relative

performance of the Polya and Multinomial models. The former differs from the latter by the

sole externality parameter b, thus placing the analysis in the context of a comparison between

nested models. In order to compare the relative performances of the two models it is possible to

use the Akaike Information Criterion corrected by finite sample size, AICc (see Akaike, 1974,

Hurvich and Tsai, 1989). Formally, this statistics is defined as

AICc = 2k − 2 ln(`) +
2k(k + 1)

n− k − 1
, (14)

where n is the sample size, k is the number of parameters in each model, and ` is the maximized

value of the likelihood function. Between two alternative models, the one with a lower AICc

value is to be preferred as it “dissipates” less information. In this sense, the definition of the

AICc prizes the goodness of fit of the model via `, while it penalizes its parametric numerosity

through k.

In principle, this procedure of model selection could produce three qualitatively distinct

results. On the one hand, it could turn out that the multinomial model outperforms the Polya

model in each single sector under scrutiny. This type of result would suggest that a model with

positive sector-specific externalities does not reveal any extra information about the spatial

distribution of firms, as compared to a model in which such externalities do not exist. On

the other hand, also the opposite scenario could take place, one in which the Polya model

systematically outperforms the multinomial model. In this case, no economic sector could do

without an account of positive sector-specific externalities in order to explain completely the

spatial distribution of firms. Still, the strength of externalities relative to other determinants of

firm localization would remain to be assessed. Finally, the multinomial model could outperform

the Polya model only in some sectors, while the opposite would be true in other sectors. As

reported in Section 5, the Polya model outperforms the multinomial model in each single sector

of the United States economy in year 2010.

Once a model is selected, its goodness of fit is measured by comparing the predicted and

the observed number of plants per region. Formally,

Efron-R2 = 1−
∑

l(nl − n∗l )2∑
i(nl − n̄)2

, (15)

where n∗l is the prediction of the model. This measure is bound in [0, 1] and thus allows for

direct comparisons across sectors. Clearly, the absolute performance of the model in explaining

the observed variability is an indicator of how much an omitted variables bias could possibly

affect the results. A high fit indicates that, whatever the missing controls are, they are unlikely

to affect substantively the estimated strength of localization externalities. In fact, this turns

out to be actually the case.
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4 Data

The localization of economic activities is identified with sectoral plant data coming from the U.S.

Census Bureau (2010b) County Business Pattern database. On the side of control variables,

population and income data come from the U.S. Census Bureau (2010a,c), while the other

controls are derived from georeferenced layers coming from the National Atlas (2013) and from

the input-output tables of the Bureau of Labor Statistics (2010).

Table 1: Summary statistics on the spatial distributions of a subsample of sectors.

NAICS-BLS Sector Total plants Mean Std.Dev Max

1133-Logging 8254 12 21 186

213-Support activities for mining 11866 17 50 684

23-Construction 677305 980 2274 27944

3121-Beverage manufacturing 4473 6 28 649

313/314-Textile 8739 13 39 721

315-Apparel manufacturing 7150 10 115 2772

3254-Pharmaceutical manufacturing 1935 3 10 150

3315-Foundries 1900 3 8 125

3344-Semiconductor manufacturing 4390 6 29 505

44/45-Retail trade 1324570 1917 4577 61778

5112-Software publishers 7224 10 40 409

512-Motion picture industries 23875 35 266 6334

517-Telecommunications 51462 74 181 2290

6216-Home health care services 27208 39 111 1570

7111-Performing arts companies 8578 12 61 1089

722-Food services and drinking places 576020 834 2251 31893

For what concerns spatial disaggregation, all county-level data have been aggregated in

commuting zones following standard correspondences (see U.S. Department of Agriculture-ERS,

2010). Therefore, the regions over which plants are spread represent economically meaningful

units, as they identify local labor markets. This constitutes a distinctive trait of the present

analysis as compared to other studies, which typically resort to merely administrative spatial

units. Moreover, aggregating by commuting zones ends up absorbing much of the spatial

autocorrelation that generally exists among smaller units such as counties. Also for this reason

the present work does not introduce explicitly any spatial lag in the variables of inquiry. By

using commuting zones, the number of spatial units amounts to 691 after having dropped Alaska

and Hawaii from the analysis.

As for sectoral disaggregation, plants are subdivided according to the Bureau of Labor

Statistics (2010) classification. This choice is motivated by the need to have sectoral correspon-

dence between plant data and the input-output matrix that serves to compute the local share

of vertically-related sectors, as explained above. With this choice, the present analysis spans
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161 sectors ranging from manufacturing and services to agriculture related ones. More than

85% of the national economy is taken in consideration.

As a remark, it is worth signaling that there is an analytic reason to use plant rather that

employee data to identify the localization of economic activities. That is, differently from the

number of employees, the number of plants settled in a region is an accurate measure of the

number of localization choices on the side of firms that have identified such region as preferable.

Summary statistics on the spatial distributions of plants are shown for a subsample of sectors

in Table 1, which gives an intuition of the strong heterogeneity existing among sectors as well

as of the vast variety of economic activities included in the present analysis.

Table 2: Summary statistics on the spatial distributions of control variables.

Variable by commuting zone Mean Std.Dev Min Max

Population 443732 1144284 1006 17897500

Area (kmsq) 19089 18057 225 219265

Median income 42695 8055 25912 86363

Distance from infrastructures (km) 138 84 10 391

Number of mines 0 1 0 19

Cropland (% of area) 46 24 0 97

Forest (% of area) 36 32 0 99

Rivers (m per kmsq) 38 23 0 117

Coasts (m per kmsq) 18 79 0 824

Local share of related sectors (h)∗ 1 3 0 46

∗ The datum reported here is the cross-sectoral arithmetic average (see text).

5 Results

This section reports a summary of the marginal elasticities estimates deriving from the proce-

dure described in Section 3. Both the Polya and the Multinomial models have been estimated

on all 161 sectors in the dataset. For the sake of brevity, only the main results are highlighted

here, while the full set of estimates can be consulted at the authors’ web page.6

To begin with, the procedure of model selection described in Section 3.2 ends up delivering

a clearcut result. The Polya model outperforms the Multinomial one in each single sector of the

United States economy: that is, the AICc values associated to the former are systematically

lower than those associated to the latter model. Hence, no sector can do without an account of

localization externalities for its spatial distribution to be fully explained.7 However, the actual

strength of externalities remains to be assessed through the estimation of marginal elasticities.

Nevertheless, given the outcome of the model selection procedure, it is possible to focus only on

the estimates resulting from the Polya model without fearing to lose any relevant information.

6See https://sites.google.com/site/gragnolati/results/bograusa_2013.
7A partial exception is represented by sector 622-Hospitals, in which the AICc values of the Polya and

Multinomial model are identical.
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Figure 5: Estimates of marginal elasticities. Each black dot corresponds to a sector, while the
red dot is the cross-sectoral arithmetic average. The estimates are obtained from equations
(12) and (9).

For what concerns the role of the control variables, another clearcut result emerges. As

an average across sectors, the effect of population largely outperforms the effects of any other

control variable. More precisely, the marginal elasticity associated to population is the only one

being statistically significant at least at 99% level across all sectors, while being also, on average,

at least one order of magnitude greater than the elasticities associated to the other controls.8

For instance, the average magnitude of the marginal elasticity associated to population is 0.65,

followed from very far away from the local share of related sectors with an average elasticity of

0.04. Given their weakness, the elasticities related to the other controls are not discussed here.

In fact, the only determinant of firm localization that is comparable in strength to the

pull of population are sector-specific localization externalities. Figure 5 illustrates this point

by showing the marginal elasticities associated to population in relation with those associated

to localization externalities. Each black dot in the figure represents one of the 161 sectors

under scrutiny, while the red dot is their cross-sectoral average. With an average magnitude

of 0.69, the effect of localization externalities turns out being slightly stronger that the effect

of population and predominant in about 60% of the sectors. Moreover, the marginal elasticity

8Sector 114-Fishing, hunting and trapping represents an exception, being the only one in which the
marginal elasticity of population is not statistically significant.
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Figure 6: Distribution of the Efron R2 across sectors.

associated to externalities always reaches at least a 99% level of statistical significance across all

sectors. Therefore, their average strength is not concentrated in just a few sectors, but rather

the opposite: localization externalities diffusely predominate across various economic activities.

The robustness of this set of conclusions is strengthened by the remarkable goodness of fit

of the model. As an average across sectors, the Polya model correctly predicts about 83% of

the number of plants in each region. As shown in Figure 6, the Polya model explains more

than 70% of the observed variance in 131 sectors out of 161. Among other things, this implies

that there is very little room for omitted variables bias in a vast majority of sectors.

6 Conclusion

This work has presented a methodology to disentangle and quantify the strength of localization

externalities, as well as of other drivers of firm location. Such methodology is based on a discrete

choice model in which the idiosyncratic preferences of firms enter as a stochastic term, thus

depicting agents as being heterogeneous. The resulting equilibrium is of a stochastic type, as it

predicts the probability distribution of firms across regions given some region-specific features

that capture the intrinsic attractiveness of each location. Relying on maximum likelihood, it

is then possible to estimate the marginal effects of the various determinants on the probability
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for a region to attract and extra firm.

When applied on the various economic sectors of the US, this estimation procedure has

delivered three main results. On the one hand, our analysis finds empirical justification for

the huge stress that economic geography has traditionally put on urbanization economies and

localization externalities. Indeed, these two forces turn out being the most important drivers of

firms location in terms of relative magnitudes. On the other hand, our analysis finds localization

externalities to be widespread across the entire economy, rather than in some particular sectors.

In particular, strong localization externalities do not result to be a prerogative of high-tech

sectors. In comparative terms, these results for the US are in line with those obtained for Italy

in Bottazzi and Gragnolati (2012).

It remains an open issue to better understand the role that knowledge plays as a source

localization externalities. Having found their effect to be so strong and widespread in the

economy might imply that knowledge spillovers are equally diffused. To tackle this issue more

precisely, it might be worthwhile to apply the framework presented here specifically to the

localization of innovative activities, and then compare the results with those of other approaches

in the literature (see Audretsch and Feldman, 1996, Jaffe et al., 1993, among others). This might

well gives some further insights to the understanding of the role of knowledge in the geography

of production and innovation.
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